共查询到20条相似文献,搜索用时 15 毫秒
1.
Large‐Area,Free‐Standing,Two‐Dimensional Supramolecular Polymer Single‐Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution 下载免费PDF全文
Dr. Renhao Dong Martin Pfeffermann Dr. Haiwei Liang Dr. Zhikun Zheng Dr. Xiang Zhu Dr. Jian Zhang Prof. Dr. Xinliang Feng 《Angewandte Chemie (International ed. in English)》2015,54(41):12058-12063
The rational construction of covalent or noncovalent organic two‐dimensional nanosheets is a fascinating target because of their promising applications in electronics, membrane technology, catalysis, sensing, and energy technologies. Herein, a large‐area (square millimeters) and free‐standing 2D supramolecular polymer (2DSP) single‐layer sheet (0.7–0.9 nm in thickness), comprising triphenylene‐fused nickel bis(dithiolene) complexes has been readily prepared by using the Langmuir–Blodgett method. Such 2DSPs exhibit excellent electrocatalytic activities for hydrogen generation from water with a Tafel slope of 80.5 mV decade?1 and an overpotential of 333 mV at 10 mA cm?2, which are superior to that of recently reported carbon nanotube supported molecular catalysts and heteroatom‐doped graphene catalysts. This work is promising for the development of novel free‐standing organic 2D materials for energy technologies. 相似文献
2.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(30):9526-9530
Two Pt single‐atom catalysts (SACs) of Pt‐GDY1 and Pt‐GDY2 were prepared on graphdiyne (GDY)supports. The isolated Pt atoms are dispersed on GDY through the coordination interactions between Pt atoms and alkynyl C atoms in GDY, with the formation of five‐coordinated C1‐Pt‐Cl4 species in Pt‐GDY1 and four‐coordinated C2‐Pt‐Cl2 species in Pt‐GDY2. Pt‐GDY2 shows exceptionally high catalytic activity for the hydrogen evolution reaction (HER), with a mass activity up to 3.3 and 26.9 times more active than Pt‐GDY1 and the state‐of‐the‐art commercial Pt/C catalysts, respectively. Pt‐GDY2 possesses higher total unoccupied density of states of Pt 5d orbital and close to zero value of Gibbs free energy of the hydrogen adsorption (|Δ |) at the Pt active sites, which are responsible for its excellent catalytic performance. This work can help better understand the structure–catalytic activity relationship in Pt SACs. 相似文献
3.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(42):13181-13185
Reported herein are two new polymorphic Co‐MOFs (CTGU‐5 and ‐6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H2O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU‐5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU‐6 with the lattice water. The integration with co‐catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU‐5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec−1, higher exchange current density of 8.6×10−4 A cm−2, and long‐term stability. 相似文献
4.
5.
6.
7.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(41):13642-13646
We report herein a series of tetrablock‐mimic azobenzene‐containing [60]fullerene dyads that form supramolecular liquid crystals (LCs) from phase‐segregated two‐dimensional (2D) crystals. The unique double‐, triple‐, and quadruple‐layer packing structure of fullerenes in the 2D crystals leads to different smectic supramolecular LC phases, and novel LC phase transitions were observed upon changes in the fullerene packing layer number in the 2D crystals. Interestingly, by combining the LC properties with 2D crystals, these materials show excellent electron mobility in the order of 10−3 cm2 V−1 s−1, despite their relatively low fullerene content. Our results provide a novel method to manipulate 2D crystal layer thickness, with promising applications in optoelectronic devices. 相似文献
8.
9.
10.
Haixia Zhong Jun Wang Fanlu Meng Xinbo Zhang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2016,128(34):10091-10095
Developing effective ways to recycle rusted stainless steel and to promote the sluggish oxygen evolution reaction (OER), associated with water splitting and metal–air batteries, is important for a resource‐sustainable and environment‐friendly society. Herein, we propose a strategy to enable rusted stainless steel plate to be used as an abundant and low‐cost OER catalyst, wherein a hydrothermal combined in situ electrochemical oxidation–reduction cycle (EORC) method is developed to mimic and expedite the corrosion process, and thus activate stainless steel into free‐standing OER electrodes. Benefiting from the plentiful electrolyte‐accessible Fe/(Ni) oxyhydroxides, high conductivity and mechanical stability, this electrode exhibits remarkable OER performances including low overpotential, fast kinetics, and long‐term durability. The slight degradation in current after long‐term use can be repaired immediately in situ by an EORC. 相似文献
11.
12.
13.
Juyeon Park Ju‐Hyung Kim Sunmi Bak Kazukuni Tahara Jaehoon Jung Maki Kawai Yoshito Tobe Yousoo Kim 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(28):9713-9720
Chiral structures created through the adsorption of molecules onto achiral surfaces play pivotal roles in many fields of science and engineering. Here, we present a systematic study of a novel chiral phenomenon on a surface in terms of organizational chirality, that is, meso‐isomerism, through coverage‐driven hierarchical polymorphic transitions of supramolecular assemblies of highly symmetric π‐conjugated molecules. Four coverage‐dependent phases of dehydrobenzo[12]annulene were uniformly fabricated on Ag(111), exhibiting unique chiral characteristics from the single‐molecule level to two‐dimensional supramolecular assemblies. All coverage‐driven phase transitions stem from adsorption‐induced pseudo‐diastereomerism, and our observation of a lemniscate‐type (∞) supramolecular configuration clearly reveals a drastic chiral phase transition from an enantiomeric chiral domain to a meso‐isomeric achiral domain. These findings provide new insights into controlling two‐dimensional chiral architectures on surfaces. 相似文献
14.
Haijing Yan Chungui Tian Lei Wang Aiping Wu Meichen Meng Lu Zhao Honggang Fu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2015,127(21):6423-6427
Phosphorus‐modified tungsten nitride/reduced graphene oxide (P‐WN/rGO) is designed as a high‐efficient, low‐cost electrocatalyst for the hydrogen evolution reaction (HER). WN (ca. 3 nm in size) on rGO is first synthesized by using the H3[PO4(W3O9)4] cluster as a W source. Followed by phosphorization, the particle size increase slightly to about 4 nm with a P content of 2.52 at %. The interaction of P with rGO and WN results in an obvious increase of work function, being close to Pt metal. The P‐WN/rGO exhibits low onset overpotential of 46 mV, Tafel slope of 54 mV dec−1, and a large exchange current density of 0.35 mA cm−2 in acid media. It requires overpotential of only 85 mV at current density of 10 mA cm−2, while remaining good stability in accelerated durability testing. This work shows that the modification with a second anion is powerful way to design new catalysts for HER. 相似文献
15.
Mickaël Mnand Sgolne AdamdeBeaumais Lise‐Marie Chamoreau Etienne Derat Sbastien Blanchard Yongmin Zhang Laurent Bouteiller Matthieu Sollogoub 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2014,126(28):7366-7370
The crystallization of a di‐azido‐α‐cyclodextrin revealed a polymeric self‐assembly involving a variety of azido‐type interactions. The crystal arrangement relies on the cooperativity of a primary azido inclusion, a secondary azido–azido interaction involving an unprecedented distribution of canonical forms, and a tertiary azido–groove interaction. The second azido group brings in a major contribution to the supramolecular structure illustrating the benefit of a difunctionalization for the generation of hierarchy. 相似文献
16.
17.
18.
Facile,Template‐Free Synthesis of Stimuli‐Responsive Polymer Nanocapsules for Targeted Drug Delivery
Eunju Kim Dongwoo Kim Hyuntae Jung Jiyeong Lee Somak Paul Narayanan Selvapalam Yosep Yang Namseok Lim ChanGyung Park Kimoon Kim 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2010,122(26):4507-4510
19.
Jakob Kibsgaard Thomas F. Jaramillo 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2014,126(52):14661-14665
Introducing sulfur into the surface of molybdenum phosphide (MoP) produces a molybdenum phosphosulfide (MoP|S) catalyst with superb activity and stability for the hydrogen evolution reaction (HER) in acidic environments. The MoP|S catalyst reported herein exhibits one of the highest HER activities of any non‐noble‐metal electrocatalyst investigated in strong acid, while remaining perfectly stable in accelerated durability testing. Whereas mixed‐metal alloy catalysts are well‐known, MoP|S represents a more uncommon mixed‐anion catalyst where synergistic effects between sulfur and phosphorus produce a high‐surface‐area electrode that is more active than those based on either the pure sulfide or the pure phosphide. The extraordinarily high activity and stability of this catalyst open up avenues to replace platinum in technologies relevant to renewable energies, such as proton exchange membrane (PEM) electrolyzers and solar photoelectrochemical (PEC) water‐splitting cells. 相似文献
20.
Jin‐Xian Feng Han Xu Sheng‐Hua Ye Prof. Gangfeng Ouyang Prof. Ye‐Xiang Tong Prof. Gao‐Ren Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(28):8232-8236
Constructing inorganic–organic hybrids with superior properties in terms of water adsorption and activation will lead to catalysts with significantly enhanced electrocatalytic activity in the hydrogen evolution reaction (HER) in environmentally benign neutral media. Herein, we report SiO2–polypyrrole (PPy) hybrid nanotubes supported on carbon fibers (CFs) (SiO2 /PPy NTs–CFs) as inexpensive and high‐performance electrocatalysts for the HER in neutral media. Because of the strong electronic interactions between SiO2 and PPy, the SiO2 uniquely serves as the centers for water adsorption and activation, and accordingly promotes the HER. The metal‐free SiO2 /PPy NTs–CFs displayed high catalytic activity in the HER in neutral media, such as a low onset potential and small Tafel slope, as well as excellent long‐term durability. 相似文献