首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An umpolung Mannich‐type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one‐pot formation of C? N and C? C bonds by a titanocene‐catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N‐substituted γ‐amido‐acid derivatives and γ‐amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α‐amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A.  相似文献   

2.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

3.
The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well‐recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid‐catalyzed N‐allylation of electron‐poor N‐heterocyclic amides and sulfonamide via an amide‐aldehyde‐alkene condensation reaction. The substrate scope with respect to N‐heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N‐methyl‐1‐naphthamide or methyl (naphthalene‐1‐ylmethyl)carbamate, with paraformaldehyde and styrene in a one‐pot manner.  相似文献   

4.
A copper‐catalyzed three‐component reaction of alkenes, acetonitrile, and sodium azide afforded γ‐azido alkyl nitriles by formation of one C(sp3)−C(sp3) bond and one C(sp3)−N bond. The transformation allows concomitant introduction of two highly versatile groups (CN and N3) across the double bond. A sequence involving the copper‐mediated generation of a cyanomethyl radical and its subsequent addition to an alkene, and a C(sp3)−N bond formation accounted for the reaction outcome. The resulting γ‐azido alkyl nitrile can be easily converted into 1,4‐diamines, γ‐amino nitriles, γ‐azido esters, and γ‐lactams of significant synthetic value.  相似文献   

5.
The first enantioselective α‐allylation of aldehydes with terminal alkenes has been realized by combining asymmetric counteranion catalysis and palladium‐catalyzed allylic C H activation. This method can tolerate a wide scope of α‐branched aromatic aldehydes and terminal alkenes, thus affording allylation products in high yields and with good to excellent levels of enantioselectivity. Importantly, the findings suggest a new strategy for the future creation of enantioselective C H/C H coupling reactions.  相似文献   

6.
A simple and convenient method for the direct, aminocatalytic, and highly enantioselective Mannich reactions of aldehydes with in situ generated N‐carbamoyl imines has been developed. Both α‐imino esters and aromatic imines serve as suitable electrophilic components. Moreover, the judicious selection of commercially available secondary amine catalysts allows selective access to the desired stereoisomer of the Ntert‐butoxycarbonyl (Boc) or N‐carbobenzyloxy (Cbz) Mannich adducts, with high control over the syn or anti relative configuration and almost perfect enantioselectivity. Besides the possibility to fully control the stereochemistry of the Mannich reaction, the main advantage of this method lies in the operational simplicity; the highly reactive N‐carbamate‐protected imines are generated in situ from stable and easily handled α‐amido sulfones.  相似文献   

7.
The first example of PdII‐catalyzed γ‐C(sp3)?H functionalization of aliphatic and benzoheteroaryl aldehydes has been developed using a transient ligand and an external ligand, concurrently. A wide array of γ‐arylated aldehydes were readily accessed without preinstalling internal directing groups. The catalytic mechanism was studied by performing deuterium‐labelling experiments, which indicated that the γ‐C(sp3)?H bond cleavage is the rate‐limiting step during the reaction process. This reaction could be performed on a gram scale, and also demonstrated its potential application in the synthesis of new mechanofluorochromic materials with blue‐shifted mechanochromic properties.  相似文献   

8.
The diarylprolinol‐mediated asymmetric direct cross‐aldol reaction of α,β‐unsaturated aldehyde as an electrophilic aldehyde was developed. The reaction becomes accelerated by an acid when a carbonyl group is introduced at the γ‐position of the α,β‐unsaturated aldehyde. Synthetically useful γ,δ‐unsaturated β‐hydroxy aldehydes were obtained with high anti‐selectivity and excellent enantioselectivity.  相似文献   

9.
Site‐selective ruthenium(II)‐catalyzed direct arylation of amides was achieved through C?H cleavages with modular auxiliaries, derived from easily accessible 1,2,3‐triazoles. The triazolyldimethylmethyl (TAM) bidentate directing group was prepared in a highly modular fashion through copper(I)‐catalyzed 1,3‐dipolar cycloaddition and allowed for ruthenium‐catalyzed C?H arylations on arenes and heteroarenes, as well as alkenes, by using easy‐to‐handle aryl bromides as the arylating reagents. The triazole‐assisted C?H activation strategy was found to be widely applicable, to occur under mild reaction conditions, and the catalytic system was tolerant of important electrophilic functionalities. Notably, the flexible triazole‐based auxiliary proved to be a more potent directing group for the optimized ruthenium(II)‐catalyzed direct arylations, compared with pyridyl‐substituted amides or substrates derived from 8‐aminoquinoline.  相似文献   

10.
Compared to the α‐functionalization of aldehydes, ketones, even esters, the direct α‐modification of amides is still a challenge because of the low acidity of α‐CH groups. The α‐functionalization of N−H (primary and secondary) amides, containing both an unactived α‐C−H bond and a competitively active N−H bond, remains elusive. Shown herein is the general and efficient oxidative α‐oxyamination and hydroxylation of aliphatic amides including secondary N−H amides. This transition‐metal‐free chemistry with high chemoselectivity provides an efficient approach to α‐hydroxy amides. This oxidative protocol significantly enables the selective functionalization of inert α‐C−H bonds with the complete preservation of active N−H bond.  相似文献   

11.
Stable C O linkages are generally unreactive in cross‐coupling reactions which mostly employ more electrophilic halides or activated esters (triflates, tosylates). Acetates are cheap and easily accessible electrophiles but have not been used in cross‐couplings because the strong C O bond and high propensity to engage in unwanted acetylation and deprotonation. Reported herein is a selective iron‐catalyzed cross‐coupling of diverse alkenyl acetates, and it operates under mild reaction conditions (0 °C, 2 h) with a ligand‐free catalyst (1–2 mol %).  相似文献   

12.
Unprecedented phosphine‐catalyzed [4+1] cycloadditions of allenyl imides have been discovered using various N‐based substrates including methyl ketimines, enamines, and a primary amine. These transformations provide a one‐pot access to cyclopentenoyl enamines and imines, or (chiral) γ‐lactams through two geminal C?C bond or two C?N bond formations, respectively. Several P‐based key intermediates including a 1,4‐(bis)electrophilic α,β‐unsaturated ketenyl phosphonium species have been detected by 31P NMR and HRMS analyses, which shed light on the postulated catalytic cycle. The synthetic utility of this new chemistry has been demonstrated through a gram‐scaling up of the catalytic reaction as well as regioselective hydrogenation and double condensation to form cyclopentanoyl enamines and fused pyrazole building blocks, respectively.  相似文献   

13.
Transition‐metal‐catalyzed hydroamination reactions are sustainable and atom‐economical C? N bond‐forming processes. Although remarkable progress has been made in the inter‐ and intramolecular amination of olefins and 1,3‐dienes, related intermolecular reactions of amides are still much less known. Control of the regioselectivity without analogous telomerization is the particular challenge in the catalytic hydroamidation of alkenes and 1,3‐dienes. Herein, we report a general protocol for the hydroamidation of electron‐deficient N‐heterocyclic amides and sulfonamides with 1,3‐dienes and vinyl pyridines in the presence of a catalyst derived from [{Pd(π‐cinnamyl)Cl}2] and ligand L7 or L10 . The reactions proceeded in good to excellent yield with high regioselectivity. The practical utility of our method is demonstrated by the hydroamidation of functionalized biologically active substrates. The high regioselectivity for linear amide products makes the procedure useful for the synthesis of a variety of allylic amides.  相似文献   

14.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

15.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

16.
Metal‐catalyzed reactions of amides proceeding via metal insertion into the N CO bond are severely underdeveloped due to resonance stabilization of the amide bond. Herein we report the first Heck reaction of amides proceeding via highly chemoselective N CO cleavage catalyzed by Pd0 utilizing amide bond ground‐state destabilization. Conceptually, this transformation provides access to a myriad of metal‐catalyzed transformations of amides via metal insertion/decarbonylation.  相似文献   

17.
Transition‐metal‐catalyzed hydroarylation of unactivated alkenes with strategic use of remote coordinating functional groups has received significant attention recently to address the issues of both low reactivity and poor selectivity. The bidentate 8‐aminoquinoline amide group is the most successfully adopted in unactivated alkenes for Pd and Ni catalysis. We describe the first manganese‐catalyzed hydroarylation of unactivated alkenes bearing diverse simple functionalities with arylboronic acids. A series of δ‐ and γ‐arylated amides, ketones, pyridines, and amines was accessed with excellent regioselectivity and in high yields. Hydroalkenylation of unactivated alkenes was also shown to be applicable under this manganese‐catalysis regime. The method features earth‐abundant manganese catalysis, easily available substrates, broad functional‐group tolerance, and excellent regioselective control.  相似文献   

18.
The oxidative interception of various σ‐alkyl palladium(II) intermediates with additional reagents for the difunctionalization of alkenes is an important research area. A new palladium‐catalyzed oxidative difunctionalization reaction of alkenes with α‐carbonyl alkyl bromides is described, in which the σ‐alkyl palladium(II) intermediate is generated through a Heck insertion and trapped using an aryl C(sp2)? H bond. This method can be applied to various α‐carbonyl alkyl bromides, including primary, secondary, and tertiary α‐bromoalkyl esters, ketones, and amides.  相似文献   

19.
A novel and efficient palladium‐catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N‐alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium‐catalyzed hydroaminocarbonylation.  相似文献   

20.
A highly diastereoselective method for the synthesis of dihydroepoxybenzofluorenone derivatives from aromatic/vinylic amides and bicyclic alkenes is described. This new transformation proceeds through cobalt‐catalyzed C?H activation and intramolecular nucleophilic addition to the amide functional group. Transition‐metal‐catalyzed C?H activation reactions of secondary amides with alkenes usually lead to [4+2] or [4+1] annulation; to the best of our knowledge, this is the first time that a [3+2] cycloaddition is described in this context. The reaction proceeds under mild conditions and tolerates a wide range of functional groups. Mechanistic studies imply that the C?H bond cleavage may be the rate‐limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号