首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Li, Rb and Cs complexes with the herbicide (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[aqua[μ3‐(2,4‐dichlorophenoxy)acetato‐κ3O1:O1:O1′]lithium(I)] dihydrate], {[Li(C8H5Cl2O3)(H2O)]·2H2O}n, (I), poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ4O1:O1′:O1′,Cl2]dirubidium(I)], [Rb2(C8H5Cl2O3)2(H2O)]n, (II), and poly[μ‐aqua‐bis[μ3‐(2,4‐dichlorophenoxy)acetato‐κ5O1:O1′:O1′,O2,Cl2]dicaesium(I)], [Cs2(C8H5Cl2O3)2(H2O)]n, (III), respectively, have been determined and their two‐dimensional polymeric structures are described. In (I), the slightly distorted tetrahedral LiO4 coordination involves three carboxylate O‐atom donors, of which two are bridging, and a monodentate aqua ligand, together with two water molecules of solvation. Conjoined six‐membered ring systems generate a one‐dimensional coordination polymeric chain which extends along b and interspecies water O—H...O hydrogen‐bonding interactions give the overall two‐dimensional layers which lie parallel to (001). In hemihydrate complex (II), the irregular octahedral RbO5Cl coordination about Rb+ comprises a single bridging water molecule which lies on a twofold rotation axis, a bidentate Ocarboxy,Cl‐chelate interaction and three bridging carboxylate O‐atom bonding interactions from the 2,4‐D ligand. A two‐dimensional coordination polymeric layer structure lying parallel to (100) is formed through a number of conjoined cyclic bridges, including a centrosymmetric four‐membered Rb2O2 ring system with an Rb...Rb separation of 4.3312 (5) Å. The coordinated water molecule forms intralayer aqua–carboxylate O—H...O hydrogen bonds. Complex (III) comprises two crystallographically independent (Z′ = 2) irregular CsO6Cl coordination centres, each comprising two O‐atom donors (carboxylate and phenoxy) and a ring‐substituted Cl‐atom donor from the 2,4‐D ligand species in a tridentate chelate mode, two O‐atom donors from bridging carboxylate groups and one from a bridging water molecule. However, the two 2,4‐D ligands are conformationally very dissimilar, with one phenoxyacetate side chain being synclinal and the other being antiperiplanar. The minimum Cs...Cs separation is 4.4463 (5) Å. Structure extension gives coordination polymeric layers which lie parallel to (001) and are stabilized by intralayer water–carboxylate O—H...O hydrogen bonds.  相似文献   

2.
The two‐dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4‐fluorophenoxy)acetic acid, (3‐chloro‐2‐methylphenoxy)acetic acid and the herbicidally active (2,4‐dichlorophenoxy)acetic acid (2,4‐D), namely poly[[μ5‐(4‐fluorophenoxy)acetato][μ4‐(4‐fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[μ5‐(3‐chloro‐2‐methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[μ7‐(2,4‐dichlorophenoxy)acetato][(2,4‐dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs+ cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O‐atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O′‐chelate interaction. Polymeric extension is achieved through a number of carboxylate O‐atom bridges, with a minimum Cs...Cs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine‐coordination about the Cs+ cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O‐atom bonding interactions, giving a Cs...Cs separation of 4.2473 (3) Å. The water molecule forms intralayer hydrogen bonds within the two‐dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O‐atom donors and two ring‐substituted Cl‐atom donors from two hydrogen bis[(2,4‐dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O‐atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O—H...O hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two‐dimensional coordination polymers.  相似文献   

3.
The structures of the sodium, potassium and rubidium complex salts of (4‐fluorophenoxy)acetic acid (PFPA), namely poly[μ‐aqua‐aqua‐μ‐[2‐(4‐fluorophenoxy)acetato]‐κ3O 1,O 2:O1′‐sodium], [Na(C8H6FO3)(H2O)2]n , (I), and isotypic poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐potassium], [K(C8H6FO3)]n , (II), and poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐rubidium], [Rb(C8H6FO3)]n , (III), have been determined and their coordination polymeric structures described. In the structure of (I), the very distorted octahedral NaO6 coordination polyhedron comprises two bidentate chelating O‐atom donors (carboxylate and phenoxy) of the PFPA ligand and three O‐atom donors from water molecules, one monodentate and the other μ2‐bridging between inversion‐related Na centres in a cyclic manner. A bridging carboxylate donor generates two‐dimensional polymer layers lying parallel to (001), in which intralayer water O—H…O hydrogen‐bonding associations are also present. Structures (II) and (III) are isotypic, each having an irregular M O7 stereochemistry, with the primary metal–ligand bidentate chelate similar to that in (I) and extended into a two‐dimensional polymeric layered structure, lying parallel to (100), through five additional bridging carboxylate O atoms. Two of these bonds are from an O ,O ′‐bidentate chelate interaction and the other three are from μ3‐O‐atom bridges, generating cyclic links with short M M separations [3.9064 (17) Å for (II) and 4.1001 (8) for (III)], the shortest being a centrosymmetric four‐membered cyclic link. In the crystals of (I)–(III), intralayer C—H…F interactions are present, but no π–π ring interactions are found.  相似文献   

4.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

5.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

6.
The coordination chemistry of mixed‐ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal–organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic–inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene‐2‐carboxylate (2‐TPC) and 2‐amino‐4,6‐dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X‐ray diffraction studies, namely (2‐amino‐4,6‐dimethoxypyrimidine‐κN)aquachlorido(thiophene‐2‐carboxylato‐κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena‐poly[copper(II)‐tetrakis(μ‐thiophene‐2‐carboxylato‐κ2O:O′)‐copper(II)‐(μ‐2‐amino‐4,6‐dimethoxypyrimidine‐κ2N1:N3)], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the CoII ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2‐TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2‐TPC ligand form an interligand N—H…O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R22(8) motif] via a pair of N—H…N hydrogen bonds. These interactions, together with O—H…O and O—H…Cl hydrogen bonds and π–π stacking interactions, generate a three‐dimensional supramolecular architecture. The one‐dimensional coordination polymer (II) contains the classical paddle‐wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2‐TPC ligands bridges two square‐pyramidally coordinated CuII ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one‐dimensional polymeric chains self‐assemble via N—H…O, π–π and C—H…π interactions, generating a three‐dimensional supramolecular architecture.  相似文献   

7.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

8.
In the linear coordination polymer catena‐poly[[[aqua(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2:O2′,N,O6‐[(nitrato‐κ2O,O′)bismuth(III)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2,N,O6:O6′] dihydrate], {[BiIIICuII(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2O}n, the BiIII cation is O,N,O′‐chelated by the two pyridine‐2,6‐dicarboxylate ligands and O,O′‐chelated by the nitrate anion, the nine coordinating atoms conferring a tricapped trigonal prismatic environment on the metal centre. Each pyridine‐2,6‐dicarboxylate ligand uses one of its carboxylate O atoms to bind to an aqua(1,10‐phenanthroline)copper(II) unit, the Cu—O dative bonds giving rise to the formation of a ribbon motif. The CuII cation exhibits a square‐pyramidal geometry. The ribbon motif propagates along the shortest axis of the triclinic unit cell and the solvent water molecules are hydrogen bonded to the same ribbon.  相似文献   

9.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

10.
By employing the conjugated bithiophene ligand 5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene (bibp), which can exhibit trans and cis conformations, two different CuII coordination polymers, namely, poly[[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′](μ2‐4,4′‐oxydibenzoato‐κ2O:O′)copper(II)], [Cu(C14H8O5)(C14H10N4S2)]n or [Cu(bibp)(oba)]n, (I), and catena‐poly[μ‐aqua‐bis[μ‐5,5′‐bis(1H‐imidazol‐1‐yl)‐2,2′‐bithiophene‐κ2N:N′]bis(μ3‐4,4′‐oxydibenzoato)‐κ3O:O′:O′′;κ4O:O′,O′′:O′‐dicopper(II)], [Cu2(C14H8O5)2(C14H10N4S2)(H2O)]n or [Cu2(bibp)(oba)2(H2O)]n, (II), have been prepared through one‐pot concomitant crystallization and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis, powder X‐ray diffraction (PXRD) and thermogravimetric (TG) analysis. Single‐crystal X‐ray diffraction indicates that the most interesting aspect of the structure is the existence of sole trans and cis conformations of the bibp ligand in a single net of (I) and (II), respectively. Compound (I) displays a threefold interpenetrating three‐dimensional framework with a 4‐connected {65.8} cds topology, whereas (II) features a one‐dimensional chain structure. In the crystal of (II), the polymeric chains are further extended through C—H…O hydrogen bonds and C—H…π interactions into a three‐dimensional supramolecular architecture. In addition, strong intramolecular O—H…O hydrogen bonds formed between the bridging water molecules and the carboxylate O atoms improve the stability of the framework of (II). Furthermore, solid‐state UV–Vis spectroscopy experiments show that compounds (I) and (II) exhibit optical band gaps which are characteristic for optical semiconductors, with values of 2.70 and 2.26 eV, respectively.  相似文献   

11.
(4‐Aminophenyl)arsonic acid (p‐arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4‐aminophenyl)arsonic acid (p‐arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4‐aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena‐poly[[[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]‐[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n , (II), catena‐poly[[triaquastrontium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Sr(C6H7AsNO3)2(H2O)3]n , (III), and catena‐poly[[triaquabarium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Ba(C6H7AsNO3)2(H2O)3]n , (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral [Mg(H2O)6]2+ cation, the two hydrogen p‐arsanilate anions and the four water molecules of solvation form a three‐dimensional network structure through inter‐species O—H and N—H hydrogen‐bonding interactions with water and arsonate O‐atom and amine N‐atom acceptors. In one‐dimensional coordination polymer (II), the distorted octahedral CaO6 coordination polyhedron comprises two trans‐related water molecules and four arsonate O‐atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four‐membered via a single O atom and the other is eight‐membered via O :O ′‐bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen‐bonding involving O—H…O, O—H…N and N—H…O interactions gives an overall three‐dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular M O7 coordination polyhedra about the M 2+ centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion‐related arsonate O :O ′‐bridges, giving eight‐membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter‐chain N—H…O and O—H…O hydrogen‐bonding interactions extend the structures into three dimensions and the crystal packing includes π–π ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].  相似文献   

12.
From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self‐assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate‐based coordination polymers of transition metals has been developed through the grafting of N‐containing organic linkers into carboxylate‐bridged transition metal networks. A new luminescent two‐dimensional zinc(II) coordination polymer containing bridging 2,2‐dimethylsuccinate and 4,4′‐bipyridine ligands, namely poly[[aqua(μ2‐4,4′‐bipyridine‐κ2N:N′)bis(μ3‐2,2‐dimethylbutanedioato)‐κ4O1,O1′:O4:O4′5O1:O1,O4:O4,O4′‐dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2‐dimethylsuccinate ligands link linear tetranuclear ZnII subunits into one‐dimensional chains along the c axis. 4,4′‐Bipyridine acts as a tethering ligand expanding these one‐dimensional chains into a two‐dimensional layered structure. Hydrogen‐bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic–organic photoactive materials.  相似文献   

13.
Fluorine is the most electronegative element and can be used as an excellent hydrogen‐bond acceptor. Fluorous coordination compounds exhibit several advantageous properties, such as enhanced high thermal and oxidative stability, low polarity, weak intermolecular interactions and a small surface tension compared to hydrocarbons. C—H…F—C interactions, although weak, play a significant role in regulating the arrangement of the organic molecules in the crystalline state and stabilizing the secondary structure. Two cadmium(II) fluorous coordination compounds formed from 2,2′‐bipyridine, 4,4′‐bipyridine and pentafluorobenzoate ligands, namely catena‐poly[[aqua(2,2′‐bipyridine‐κ2N ,N ′)(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐2,3,4,5,6‐pentafluorobenzoato‐κ2O :O ′], [Cd(C7F5O2)2(C10H8N2)(H2O)]n , (1), and catena‐poly[[diaquabis(2,3,4,5,6‐pentafluorobenzoato‐κO )cadmium(II)]‐μ‐4,4′‐bipyridine‐κ2N :N ′], [Cd(C7F5O2)2(C10H8N2)(H2O)2]n , (2), have been synthesized solvothermally and structurally characterized. Compound (1) shows a one‐dimensional chain structure composed of Cd—O coordination bonds and is stabilized by π–π stacking and O—H…O hydrogen‐bond interactions. Compound (2) displays a one‐dimensional linear chain structure formed by Cd—N coordination interactions involving the 4,4′‐bipyridine ligand. Adjacent one‐dimensional chains are extended into two‐dimensional sheets by O—H…O hydrogen bonds between the coordinated water molecules and adjacent carboxylate groups. Moreover, the chains are further linked by C—H…F—C interactions to afford a three‐dimensional network. In both structures, hydrogen bonding involving the coordinated water molecules is a primary driving force in the formation of the supramolecular structures.  相似文献   

14.
A new linear bismuth(III) coordination polymer, catena‐poly[[chloridobismuth(III)]‐μ3‐1,10‐phenanthroline‐2,9‐dicarboxylato‐κ6O2:O2,N1,N10,O9:O9], [Bi(C14H6N2O4)Cl]n, has been obtained by an ionothermal method and characterized by elemental analysis, energy‐dispersive X‐ray spectroscopy, IR spectroscopy, thermal stability studies and single‐crystal X‐ray diffraction. The structure is constructed by Bi(C14H6N2O4)Cl fragments in which each BiIII centre is seven‐coordinated by one Cl atom, four O atoms and two N atoms. The coordination geometry of the BiIII cation is distorted pentagonal–bipyramidal (BiO4N2Cl), with one bridging carboxylate O atom and one Cl atom located in the axial positions. The Bi(C14H6N2O4)Cl fragments are further extended into a one‐dimensional linear polymeric structure via subsequent but different centres of symmetry (bridging carboxylate O atoms). Neighbouring linear chains are assembled via weak C—H...O and C—H...Cl hydrogen bonds, forming a three‐dimensional supramolecular architecture. Intermolecular π–π stacking interactions are observed, with centroid‐to‐centroid distances of 3.678 (4) Å, which further stabilize the structure. In addition, the solid‐state fluorescence properties of the title coordination polymer were investigated.  相似文献   

15.
The CoII cation in poly[[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ3O1,O2:O1)(μ‐4,4′‐bipyridine‐κ2N:N′)cobalt(II)] trihydrate], {[Co(C8H4O4)(C10H8N2)(H2O)]·3H2O}n, is octahedrally coordinated by two N atoms of two 4,4′‐bipyridine ligands, three O atoms from phthalate anions and a fourth O atom from a coordinated water molecule. The packing consists of planes of coordination polymers linked by hydrogen bonds mediated by three solvent water molecules; the linkage is achieved by the water molecules forming intricate oligomeric clusters which also involve the O atoms of the phthalate ligands.  相似文献   

16.
The one‐dimensional coordination polymer catena‐poly[diaqua(sulfato‐κO)copper(II)]‐μ2‐glycine‐κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two‐dimensional coordination polymer poly[(μ2‐glycine‐κ2O:O′)(μ4‐sulfato‐κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuII cation has a pentacoordinate square‐pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuII cation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuII cations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one‐dimensional polymers, extending along [001], are linked via N—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three‐dimensional framework. In the crystal structure of (II), the two‐dimensional networks are linked via bifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three‐dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three‐dimensional frameworks.  相似文献   

17.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

18.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

19.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

20.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号