共查询到20条相似文献,搜索用时 0 毫秒
1.
Martin Fleischmann Dr. Stefan Welsch Dr. Eugenia V. Peresypkina Dr. Alexander V. Virovets Prof. Dr. Manfred Scheer 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(41):14332-14336
Reactions of Cu+ containing the weakly coordinating anion [Al{OC(CF3)3}4]? with the polyphosphorus complexes [{CpMo(CO)2}2(μ,η2:η2‐P2)] ( A ), [CpM(CO)2(η3‐P3)] (M=Cr( B1 ), Mo ( B2 )), and [Cp*Fe(η5‐P5)] ( C ) are presented. The X‐ray structures of the products revealed mononuclear ( 4 ) and dinuclear ( 1 , 2 , 3 ) CuI complexes, as well as the one‐dimensional coordination polymer ( 5 a ) containing an unprecedented [Cu2( C )3]2+ paddle‐wheel building block. All products are readily soluble in CH2Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature 31P{1H} NMR spectroscopy. 相似文献
2.
3.
4.
Karl-Heinz Thiele Sergio Bambirra Joachim Sieler Svea Yelonek 《Angewandte Chemie (International ed. in English)》1998,37(20):2886-2888
Different bonding modes are characteristic for the lanthanum centers of the title compound, a trinuclear lanthanum–pyrene complex in which an arene trianion is present for the first time (see picture for the structure). Thus, La1 and La3 reside in a tetrahedral environment, the La2 center in a distorted trigonal-bipyramidal one. 相似文献
5.
Andreas Reisinger Dr. Nils Trapp Dr. Carsten Knapp Dr. Daniel Himmel Dr. Frank Breher Prof. Heinz Rüegger Dr. Ingo Krossing Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(37):9505-9520
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation. 相似文献
6.
Christian P. Sindlinger Paul Niklas Ruth 《Angewandte Chemie (International ed. in English)》2019,58(42):15051-15056
The pentaaryl borole (Ph*C)4BXylF [Ph*=3,5‐tBu2(C6H3); XylF=3,5‐(CF3)2(C6H3)] reacts with low‐valent Group 13 precursors AlCp* and GaCp* by two divergent routes. In the case of [AlCp*]4, the borole reacts as an oxidising agent and accepts two electrons. Structural, spectroscopic, and computational analysis of the resulting unprecedented neutral η5‐Cp*,η5‐[(Ph*C)4BXylF] complex of AlIII revealed a strong, ionic bonding interaction. The formation of the heteroleptic borole‐cyclopentadienyl “aluminocene” leads to significant changes in the 13C NMR chemical shifts within the borole unit. In the case of the less‐reductive GaCp*, borole (Ph*C)4BXylF reacts as a Lewis acid to form a dynamic adduct with a dative 2‐center‐2‐electron Ga?B bond. The Lewis adduct was also studied structurally, spectroscopically, and computationally. 相似文献
7.
8.
Rosa Carballo Berta Covelo Ezequiel M. Vzquez‐Lpez Emilia García‐Martínez Alfonso Castieiras 《无机化学与普通化学杂志》2002,628(5):907-908
The compound [Cu4(μ2‐OH)2(μ3‐OH)2Cl2(bipy)4]Cl2 · 6H2O ( 1 ) was obtained by recrystallization of [Cu(HB)2(2, 2′‐bipy)] · H2O (H2B = diphenylglycolic acid) from EtOH/CH2Cl2 and their structure has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as based on a Cu4(OH)4 core with a “stepped cubane” structure. The coordination polyhedron around each copper is a distorted square pyramid. The tetranuclear units are linked in the crystal by C‐H…Cl hydrogen bonds and by π‐π interactions between bipyridine rings. IR data are also presented. 相似文献
9.
John E. Davies Lesley C. Kerr Martin J. Mays Paul R. Raithby Peter K. Tompkin Anthony D. Woods 《Angewandte Chemie (International ed. in English)》1998,37(10):1428-1429
An Me 2 PE tetrahedrane framework is seen in complexes 2 a – c (E=P, As, Sb), which are prepared from the appropriate trichlorides and 1 in THF. The structures of the new antimony- and arsenic-containing compounds 2 b and 2 c have been determined—this is the first structural characterization of complexes with μ,η2-PE heteroligands from elements of Group 15. 相似文献
10.
11.
12.
13.
14.
15.
Zdenk Futera Julia Klenko Judit E. poner Jií poner Jaroslav V. Burda 《Journal of computational chemistry》2009,30(12):1758-1770
Piano stool ruthenium complexes of the composition [Ru(II)(η6‐arene)(en)Cl]+/2+ (en = ethylenediamine) represent an emerging class of cisplatin‐analogue anticancer drug candidates. In this study, we use computational quantum chemistry to characterize the structure, stability and reactivity of these compounds. All these structures were optimized at DFT(B3LYP)/6‐31G(d) level and their single point properties were determined by the MP2/6‐31++G(2df,2pd) method. Thermodynamic parameters and rate constants were determined for the aquation process, as a replacement of the initial chloro ligand by water and subsequent exchange reaction of aqua ligand by nucleobases. The computations were carried out at several levels of DFT and ab initio theories (B3LYP, MP2 and CCSD) utilizing a range of bases sets (from 6‐31G(d) to aug‐cc‐pVQZ). Excellent agreement with experimental results for aquation process was obtained at the CCSD level and reasonable match was achieved also with the B3LYP/6‐31++G(2df,2pd) method. This level was used also for nucleobase‐water exchange reaction where a smaller rate constant for guanine exchange was found in comparison with adenine. Although adenine follows a simple replacement mechanism, guanine complex passes by a two‐step mechanism. At first, Ru‐O6(G) adduct is formed, which is transformed through a chelate TS2 to the Ru‐N7(G) final complex. In case of guanine, the exchange reaction is more favorable thermodynamically (releasing in total by about 8 kcal/mol) but according to our results, the rate constant for guanine substitution is slightly smaller than the analogous constant in adenine case when reaction course from local minimum is considered. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 相似文献
16.
Reactions of one or two equiv. of cyclohexyl isocyanide in THF at room temperature with Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) gave the isocyanide coordinated Mo? Mo singly bonded complexes with functionally substituted cyclopentadienyl ligands, [Mo(CO)2(η5‐C5H4R)]2(μ‐η2‐CNC6H11) ( 1a , R=COCH3; 1b , R=CO2CH3) and [Mo(CO)2(η5‐C5H4R)(CNC6H11)]2 ( 2a , R=COCH3; 2b , R=CO2CH3), respectively. Complexes 1a , 1b and 2a , 2b could be more conveniently prepared by thermal decarbonylation of Mo? Mo singly bonded complexes [Mo(CO)3(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in toluene at reflux, followed by treatment of the resulting Mo?Mo triply bonded complexes [Mo(CO)2(η5‐C5H4R)]2 (R=COCH3, CO2CH3) in situ with cyclohexyl isocyanide. While 1a , 1b and 2a , 2b were characterized by elemental analysis and spectroscopy, 1b was further characterized by X‐ray crystallography. 相似文献
17.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed. 相似文献
18.
The blue copper complex compounds [Cu(phen)2(C6H8O4)] · 4.5 H2O ( 1 ) and [(Cu2(phen)2Cl2)(C6H8O4)] · 4 H2O ( 2 ) were synthesized from CuCl2, 1,10‐phenanthroline (phen) and adipic acid in CH3OH/H2O solutions. [Cu(phen)2‐ (C6H8O4)] complexes and hydrogen bonded H2O molecules form the crystal structure of ( 1 ) (P1 (no. 2), a = 10.086(2) Å, b = 11.470(2) Å, c = 16.523(3) Å, α = 99.80(1)°, β = 115.13(1)°, γ = 115.13(1)°, V = 1617.5(5) Å3, Z = 2). The Cu atoms are square‐pyramidally coordinated by four N atoms of the phen ligands and one O atom of the adipate anion (d(Cu–O) = 1.989 Å, d(Cu–N) = 2.032–2.040 Å, axial d(Cu–N) = 2.235 Å). π‐π stacking interactions between phen ligands are responsible for the formation of supramolecular assemblies of [Cu(phen)2(C6H8O4)] complex molecules into 1 D chains along [111]. The crystal structure of ( 2 ) shows polymeric [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains (P1 (no. 2), a = 7.013(1) Å, b = 10.376(1) Å, c = 11.372(3) Å, α = 73.64(1)°, β = 78.15(2)°, γ = 81.44(1)°, V = 773.5(2) Å3, Z = 1). The Cu atoms are fivefold coordinated by two Cl atoms, two N atoms of phen ligands and one O atom of the adipate anion, forming [CuCl2N2O] square pyramids with an axial Cl atom (d(Cu–O) = 1.958 Å, d(Cu–N) = 2.017–2.033 Å, d(Cu–Cl) = 2.281 Å; axial d(Cu–Cl) = 2.724 Å). Two square pyramids are condensed via the common Cl–Cl edge to centrosymmetric [Cu2Cl2N4O2] dimers, which are connected via the adipate anions to form the [(Cu2(phen)2Cl2)(C6H8O4)2/2] chains. The supramolecular 3 D network results from π‐π stacking interactions between the chains. H2O molecules are located in tunnels. 相似文献
19.
Hong‐Ping Xiao Xin‐Hua Li Ali Morsali Dr. Jia‐Guo Wang Wei‐Bing Zhang 《无机化学与普通化学杂志》2007,633(7):1107-1111
Two new two‐dimensional CuII and MnII coordination polymers of 5‐aminobenzene‐1,3‐dicarboxylic acid (abdc) ligand, [Cu(μ4‐abdc)(DMF)]n and {[Mn(μ4‐abdc)(H2O)]·H2O}n, have been synthesized and characterized by elemental analysis and IR‐ spectroscopy. The single crystal X‐ray analyses show that the coordination number in these complexes is six, CuO5Cu and MnO5N. The compounds are structurally diverse and the coordination polymer obtained from copper show significant copper–copper interaction while the manganese coordination polymer shows Mn–Namino bond. 相似文献
20.
Treatment of Pd(PPh3)4 with 2‐bromo‐4‐methylpyridine, C5H3N(CH3)Br, in dichloromethane at ?20 °C causes the oxidative addition reaction to produce the palladium complex [Pd(PPh3)2 {η1‐C5H3N(CH3)}(Br)], 2 , by substituting two triphenylphosphine ligands. In a dichloromethane solution of complex 2 at room temperature for 3 h, it undergoes displacement of the triphenylphosphine ligand to form the dipalladium complex [Pd(PPh3)Br]2{μ,η2‐C5H3N(CH3)}2, 3 , in which the two 4‐methylpyridine ligands coordinated through carbon to one metal center and bridging the other metal through the nitrogen atom. Complexes 2 and 3 are characterized by X‐ray diffraction analyses. 相似文献