首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new ternary dithulium hexacobalt icosastannide, Tm2.22Co6Sn20, and a new quaternary thulium dilithium hexacobalt icosastannide, TmLi2Co6Sn20, crystallize as disordered variants of the binary cubic Cr23C6 structure type (cF116). 48 Sn atoms occupy sites of m.m2 symmetry, 32 Sn atoms sites of .3m symmetry, 24 Co atoms sites of 4m.m symmetry, eight Li (or Tm in the case of the ternary phase) atoms sites of symmetry and four Tm atoms sites of symmetry. The environment of one Tm atom is an 18‐vertex polyhedron and that of the second Tm (or Li) atom is a 16‐vertex polyhedron. Tetragonal antiprismatic coordination is observed for the Co atoms. Two Sn atoms are enclosed in a heavily deformed bicapped hexagonal prism and a monocapped hexagonal prism, respectively, and the environment of the third Sn atom is a 12‐vertex polyhedron. The electronic structures of both title compounds were calculated using the tight‐binding linear muffin‐tin orbital method in the atomic spheres approximation (TB–LMTO–ASA). Metallic bonding is dominant in these compounds, but the presence of Sn—Sn covalent dumbbells is also observed.  相似文献   

2.
A new quaternary dicerium lithium/nickel disilicide, Ce2Li0.39Ni1.61Si2, crystallizes as a new structure type of intermetallic compounds closely related to the AlB2 family. The crystal–chemical interrelationships between parent AlB2‐type, BaLiSi, ZrBeSi and the title compound are discussed using the Bärnighausen formalism. Two Ce atoms occupy sites of 3m. symmetry. The remainder, i.e. Ni, mixed Ni/Li and Si atoms, occupy sites of m2 symmetry. The environment of the Ce atom is an 18‐vertex polyhedron and the Ni, Ni/Li and Si atoms are enclosed in tricapped trigonal prisms. The title structure can be assigned to class No. 10 (trigonal prism and its derivatives) according to the Krypyakevich classification scheme [Krypyakevich (1977). In Structure Types of Intermetallic Compounds. Moscow: Nauka]. The electronic structure of the title compound was calculated using the tight‐binding linear muffin‐tin orbital method in the atomic spheres approximation (TB‐LMTO‐ASA). Metallic bonding is dominant in this compound. The strongest interactions are Ni—Si and Ce—Si.  相似文献   

3.
The synthesis and characterization of a new ternary dilanthanum lithium hexagermanide, La2LiGe6−x (x = 0.21), belonging to the Pr2LiGe6 structure type, and a quaternary dilanthanum lithium tetragermanium disilicide, La2LiGe4Si2, which crystallizes as an ordered variant of this type, are reported. In both structures, Li is on a site of mmm symmetry. All other atoms are on sites of m2m symmetry. These structures are new representatives of a homologous linear structure series based on structural fragments of the AlB2, CaF2 and ZrSi2 structure types. The observed 17‐vertex polyhedra are typical for La atoms and the environment of the Li atom is cubic. Two Ge atoms are enclosed in a tetragonal prism with one added atom (nine‐vertex polyhedron). The trigonal prismatic coordination is typical for Ge or Si atoms. The metallic nature of the bonding is indicated by the interatomic distances and electronic structure calculations.  相似文献   

4.
The structure of lanthanum tetrazinc, LaZn4, has been determined from single‐crystal X‐ray diffraction data for the first time, approximately 70 years after its discovery. The compound exhibits a new structure type in the space group Cmcm, with one La atom and two Zn atoms occupying sites with m2m symmetry, and one Zn atom occupying a site with 2.. symmetry. The structure is closely related to the BaAl4, La3Al11, BaNi2Si2 and CaCu5 structure types, which can be presented as close‐packed arrangements of 18‐vertex clusters, in this case LaZn18. The kindred structure types contain related 18‐vertex clusters around atoms of the rare earth or alkaline earth metal.  相似文献   

5.
The new layered title compound, barium di‐μ‐hydroxido‐di‐μ‐vanadato‐tricobaltate(II), was prepared under low‐temperature hydrothermal conditions. Its crystal structure comprises Co2+ and O2− ions in the Kagomé geometry. The octahedral Co3O6(OH)2 Kagomé layers, made up of edge‐shared CoO4(OH)2 octahedra with Co on a site of 2/m symmetry, alternate along the c axis with barium vanadate heteropolyhedral layers, in which Ba is on a site of m symmetry and V is on a site of 3m symmetry. All three O atoms and the H atom also occupy special positions: two O atoms and the H atom are on sites with 3m symmetry and one O atom is on a site with m symmetry. Ba[Co3(VO4)2(OH)2] represents the first compound from the four‐component BaO–CoO–V2O5–H2O system and its structure is topologically related to the minerals vesignieite, Ba[Cu3(VO4)2(OH)2], and bayldonite, Pb[Cu3(AsO4)2(OH)2].  相似文献   

6.
The six title compounds were prepared by annealing cold‐pressed pellets consisting of stoichiometric mixtures of binary rare earth and rhodium antimonides with additional elemental rhodium in evacuated silica tubes. Their crystal structure was determined from four‐circle X‐ray diffractometer data of a Eu6Rh30Sb19 single crystal, which was isolated from an arc‐melted sample annealed just below the melting temperature in a high‐frequency furnace. It is hexagonal: P63/m, a = 1693.2(2) pm, c = 408.11(4) pm, Z = 1. The least‐squares refinement resulted in a residual of R = 0.034 for 1259 structure factors and 62 variable parameters. The structure shows some disorder around the 63 axis but otherwise is very similar to the structures of Sc6Co30Si19 and Yb6Co30P19, but different from that of U6Co30Si19. The plot of the cell volumes of the new series Ln6Rh30Sb19 indicates the europium atoms in Eu6Rh30Sb19 to be at least partially divalent.  相似文献   

7.
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P63/m. The three‐dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite‐like Li3Al3Si6 layer and a distorted diamond‐like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond‐like lattice is built up of Li cations, and the graphite‐like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si—Al = 2.4672 (4) Å].  相似文献   

8.
The electronic structure of cobalt silicide clusters Co7Si7 and Si7Co7 was studied in comparison to that of Co19 and Si17 clusters under the scope of the MINDO/SR method. Clusters Co7Si7 and Si7Co7 represent the environment of a cobalt atom and that of a silicon atom in the cobalt monosilicide bulk, respectively. It is found that the Co? Si bond is essentially sp in character with an indirect participation (by electrostatic interaction) of the cobalt d orbitals. Our calculations show a charge transfer from silicon to the d orbitals of cobalt via spsp interaction with an internal spd hybridization. The theoretical density of states for cobalt silicide clusters are reported and compared with experimental results of surface spectroscopies. © 1992 by John Wiley & Sons, Inc.  相似文献   

9.
The ternary dilithium diboron carbide, Li2B2C (tetragonal, space group Pm2, tP10), crystallizes as a new structure type and consists of structural fragments which are typical for structures of elemental lithium and boron or binary borocarbide B13C2. The symmetries of the occupied sites are .m. and 2mm. for the B and C atoms, and m2 and 2mm. for the Li atoms. The coordination polyhedra around the Li atoms are cuboctahedra and 15‐vertex distorted pseudo‐Frank–Kasper polyhedra. The environment of the B atom is a ten‐vertex polyhedron. The nearest neighbours of the C atom are two B atoms, and this group is surrounded by a deformed cuboctahedron with one centred lateral facet. Electronic structure calculations using the TB–LMTO–ASA method reveal strong B...C and B...B interactions.  相似文献   

10.
The three binary Tb/Er‐rich transition metal compounds Tb3Pd2 (triterbium dipalladium), Er3Pd2 (trierbium dipalladium) and Er6Co5–x (hexaerbium pentacobalt) crystallize in the space groups Pbam (Pearson symbol oP20), P4/mbm (tP10) and P63/m (hP22), respectively. Single crystals of Tb3Pd2 and Er6Co5–x suitable for X‐ray structure analysis were obtained using rare‐earth halides as a flux. Tb3Pd2 adopts its own structure type, which can be described as a superstructural derivative of the U3Si2 type, which is the type adopted by Er3Pd2. Compound Er6Co5–x belongs to the Ce6Co2–xSi3 family. All three compounds feature fused tricapped {TR6} (R = rare‐earth metal and T = transition metal) trigonal prismatic heterometallic clusters. R3Pd2 is reported to crystallize in the U3Si2 type; however, our more detailed structure analysis reveals that deviations occur with heavier R elements. Similarly, Er6Co5–x was assumed to be stoichiometric Er4Co3 = Er6Co4.5. Our studies reveal that it has a single defective transition‐metal site leading to the composition Er6Co4.72(2). LMTO (linear muffin‐tin orbital)‐based electronic structure calculations suggest the strong domination of heteroatomic bonding in all three structures.  相似文献   

11.
New intermetallic rare earth iridium silicides Sm3Ir2Si2, HoIrSi, and YbIrSi were synthesized by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. HoIrSi and YbIrSi crystallize in a TiNiSi type structure, space group Pnma: a = 677.1(1), b = 417.37(6), c = 745.1(1) pm, wR2 = 0.0930, 340 F2 values for HoIrSi, and a = 667.2(2), b = 414.16(8), c = 742.8(2) pm, wR2 = 0.0370, 262 F2 values for YbIrSi with 20 parameters for each refinement. The iridium and silicon atoms build a three‐dimensional [IrSi] network in which the holmium(ytterbium) atoms are located in distorted hexagonal channels. Short Ir–Si distances (246–256 pm in YbIrSi) are indicative for strong Ir–Si bonding. Sm3Ir2Si2 crystallizes in a site occupancy variant of the W3CoB3 type: Cmcm, a = 409.69(2), b = 1059.32(7), c = 1327.53(8) pm, wR2 = 0.0995, 383 F2 values and 27 variables. The Ir1, Ir2, and Si atoms occupy the Co, B2, and B1 positions of W3CoB3, leading to eight‐membered Ir4Si4 rings within the puckered two‐dimensional [IrSi] network. The Ir–Si distances range from 245 to 251 pm. The [IrSi] networks are separated by the samarium atoms. Chemical bonding in HoIrSi, YbIrSi, and Sm3Ir2Si2 is briefly discussed.  相似文献   

12.
Synthesis and Crystal Structures of Ln 2Al3Si2 and Ln 2AlSi2 ( Ln : Y, Tb–Lu) Eight new ternary aluminium silicides were prepared by heating mixtures of the elements and investigated by means of single‐crystal X‐ray methods. Tb2Al3Si2 (a = 10.197(2), b = 4.045(1), c = 6.614(2) Å, β = 101.11(2)°) and Dy2Al3Si2 (a = 10.144(6), b = 4.028(3), c = 6.580(6) Å, β = 101.04(6)°) crystallize in the Y2Al3Si2 type structure, which contains wavy layers of Al and Si atoms linked together by additional Al atoms and linear Si–Al–Si bonds. Through this there are channels along [010], which are filled by Tb and Dy atoms respectively. The silicides Ln2AlSi2 with Ln = Y (a = 8.663(2), b = 5.748(1), c = 4.050(1) Å), Ho (a = 8.578(2), b = 5.732(1), c = 4.022(1) Å), Er (a = 8.529(2), b = 5.719(2), c = 4.011(1) Å), Tm (a = 8.454(5), b = 5.737(2), c = 3.984(2) Å) and Lu (a = 8.416(2), b = 5.662(2), c = 4.001(1) Å) crystallize in the W2CoB2 type structure (Immm; Z = 2), whereas the structure of Yb2AlSi2 (a = 6.765(2), c = 4.226(1) Å; P4/mbm; Z = 2) corresponds to a ternary variant of the U3Si2 type structure. In all compounds the Si atoms are coordinated by trigonal prisms of metal atoms, which are connected by common faces so that Si2 pairs (dSi–Si: 2.37–2.42 Å) are formed.  相似文献   

13.
The geometries, magnetic properties and stabilities of the transition metal (TM) atoms encapsulated M2Si18 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) clusters have been systematically calculated by using the density function theory with generalized gradient approximation. Only when the doping metal atom has no more than half‐full d electronic shell, a double hexagonal prism cage‐like M2Si18 structure could form. The total moments of M2Si18 are either 0 or 2μB. Co2Si18 is the most stable cluster among all 3d doped M2Si18 clusters. The model of shell closure at the TM atom may be helpful to understand the stability of M2Si18 clusters. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Even if Co–Co3O4 coated Si showed a prominent improvement compared to Si in the capacity maintenance, it failed to thoroughly exclude the cyclic degradation that also consists in Si. Because the observation on dQ/dV curve of Co–Co3O4 coated Si manifested that Co–Co3O4 coated Si is charged or discharged only by alloying or de-alloying between Si and Li, some analyses were conducted to Co–Co3O4 coated Si to figure out how the degradation of Si based materials is specifically related to alloying or de-alloying between Si and Li. Most of the up-to-now reports have just tried to give us a simple explanation that the volume expansion during alloying or de-alloying between Si and Li, may have something to do with the cyclic degradation of Si based materials. Thickness variation measured at various SOC’s or DOD’s, informed that there is a narrow potential region closely linked to the primary volume expansion of Si based materials. Based on XRD analyses at different SOC’s or DOD’s, it came clear that Li15Si4 is formed and decomposed in this potential region. Thermodynamic point of view has indicated that some of potential plateaus during charge or discharge are developed by phase transitions from amorphous LixSi to Li15Si4 and vice versa. Because phase transitions are definitely followed by huge volume change as confirmed in thickness variation result, OCV’s and CCV’s of Co–Co3O4 coated Si during charge or discharge were compared to observe the change of electrode resistance. It let us know that the electrode resistance abruptly increases, wherever the volume expansion occurs with formation or decomposition of Li15Si4. Finally, the plateau-less discharge curves and improved cyclic property of Co–Co3O4 coated Si in the potential region between 70 mV and 1 V vs. Li/Li+, which can restrain the formation of Li15Si4, made sure that Li15Si4 is closely related to the cyclic degradation of Si based materials.  相似文献   

15.
The Zintl phase Eu2Si was synthesized from elemental europium and silicon in a sealed tantalum tube in a high‐frequency furnace at 1270 K and subsequent annealing at 970 K. Investigation of the sample by X‐ray powder and single crystal techniques revealed: Co2Si (anti‐PbCl2) type, space group Pnma, a = 783.0(1), b = 504.71(9), c = 937.8(1) pm, wR2 = 0.1193, 459 F2 values and 20 variables. The structure contains two europium and one silicon site. 151Eu Mössbauer spectroscopic data show a single signal at an isomer shift of −9.63(3) mm/s, compatible with divalent europium. Within the Zintl concept electron counting can be written as (2Eu2+)4+Si4−, in agreement with the absence of Si‐Si bonding. Each silicon atom has nine europium neighbors in the form of a tri‐capped trigonal prism. The silicon coordinations of the Zintl phases Eu2Si, Eu5Si3, EuSi, and EuSi2 are compared.  相似文献   

16.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

17.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

18.
A new form of Y2Si2O7 (diyttrium heptaoxodisilicate) has been synthesized which is isotypic with thortveitite, Sc2Si2O7, and crystallizes in the centrosymmetric space group C2/m, both at 100 and 280 K. The Y3+ cation occupies a distorted octahedral site, with Y—O bond lengths in the range 2.239 (2)–2.309 (2) Å. The SiO4 tetrahedron is remarkably regular, with Si—O bond lengths in the range 1.619 (2)–1.630 (2) Å. The bridging O atom of the Si2O7 pyrosilicate group shows a large anisotropic displacement perpendicular to the Si—O bond. Changes in lattice and structural parameters upon cooling are small with, however, a distinct decrease of the anisotropic displacement of the briding O atom. Structure solution and refinement in the non‐centrosymmetric space group C2 are possible but do not yield a significantly different structure model. The Si—O—Si bond angle of the isolated Si2O7 groups is 179.2 (1)° at 280 K in C2 and 180° per symmetry in C2/m. The C2/m structure model is favoured.  相似文献   

19.
Nanosheet compounds Pd11(SiiPr)2(SiiPr2)4(CNtBu)10 ( 1 ) and Pd11(SiiPr)2(SiiPr2)4(CNMes)10 ( 2 ), containing two Pd7(SiiPr)(SiiPr2)2(CNR)4 plates (R=tBu or Mes) connected with three common Pd atoms, were investigated with DFT method. All Pd atoms are somewhat positively charged and the electron density is accumulated between the Pd and Si atoms, indicating that a charge transfer (CT) occurs from the Pd to the Si atoms of the SiMe2 and SiMe groups. Negative regions of the Laplacian of the electron density were found between the Pd and Si atoms. A model of a seven‐coordinated Si species, that is, Pd5(Pd?SiMe), is predicted to be a stable pentagonal bipyramidal molecule. Five Pd atoms in the equatorial plane form bonding overlaps with two 3p orbitals of the Si atom. This is a new type of hypervalency. The Ge analogues have geometry and an electronic structure similar to those of the Si compounds. But their formation energies are smaller than those of the Si analogues. The use of the element Si is crucial to synthesize these nanoplate compounds.  相似文献   

20.
In the structure of the title compound, [Er(C6H6NO6)(H2O)]n, the Er atoms are eight‐coordinated by one N atom and six O atoms from three symmetry‐related nitrilo­tri­acetate (NTA) ligands, and by one O atom of a water mol­ecule, adopting a distorted square‐antiprismatic geometry. The Er atoms are linked by the NTA ligands into layers, which are interconnected via O—H?O hydrogen bonds between the water mol­ecules and the carboxyl­ate O atoms. The asymmetric unit contains one Er atom, one NTA ligand and one water mol­ecule, all of which are located in general positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号