共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow‐fiber double‐solvent synergistic microextraction with high‐performance liquid chromatography for the determination of antitumor alkaloids in Coptis chinensis 下载免费PDF全文
A new hollow‐fiber double‐solvent synergistic microextraction method was proposed for the extraction and concentration of trace active compounds in traditional Chinese medicine. The main variables affecting the method were investigated and optimized. Under the optimized conditions, linearities were 0.01–10 μg/mL, detection limits were lower than 0.8 ng/mL, and interday, and intraday relative standard deviations were <9.20%. Furthermore, average recoveries ranged from 102.8 to 104.1%, and enrichment factors were 6–70 for the four alkaloids tested. The antitumor alkaloid group in Coptis chinensis was screened and identified by hollow‐fiber cell fishing with high‐performance liquid chromatography. The four alkaloids were then enriched and quantified by hollow‐fiber double‐solvent synergistic microextraction with high‐performance liquid chromatography. The mechanism of the proposed microextraction method was described, and results demonstrated that the approach was a simple and reliable sample‐preparation procedure. This method, as well as hollow‐fiber cell fishing combined with high‐performance liquid chromatography can be adopted to study the different characteristic effects of the multiple components and multiple targets of traditional Chinese medicine. The approach can also be used to conduct tailored quality control of the active compounds associated with therapeutic efficacy. 相似文献
2.
Hadi Farahani Parviz Norouzi Rassoul Dinarvand Mohammad Reza Ganjali 《Journal of separation science》2009,32(2):314-320
A simple and sensitive methodology based on liquid‐phase microextraction (LPME) followed by GC‐MS, was developed for the determination of trihalomethanes (THMs) in drinking water. A microdrop of organic solvent was floated on the surface of the aqueous sample and it was agitated for a desired time. Then, the sample vial was cooled by inserting it into an ice bath for 4 min. The solidified solvent was transferred into a suitable vial and immediately melted. The extract was directly injected into the GC. Microextraction efficiency factors were investigated and optimized: 7 μL 1‐undecanol microdrop exposed for 15 min floated on the surface of a 10.0 mL aqueous sample with the temperature of 60°C containing 3 M of NaCl and stirred at 750 rpm. Under the selected conditions, enrichment factors (EFs) up to 482‐fold, LOD of 0.03–0.08 μg/L (S/N = 3) and dynamic linear ranges of 0.10–100 μg/L were obtained. A reasonable repeatability (RSD < 8.6%, n = 8) with satisfactory linearity (r2 ? 0.9947) of results illustrated a good performance of the present method. The protocol proved to be rapid, cost‐effective, and is a green procedure for the screening purposes. 相似文献
3.
Trace analysis of chlorobenzenes in water samples using headspace solvent microextraction and gas chromatography/electron capture detection 总被引:2,自引:0,他引:2
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples. 相似文献
4.
Rafael Almeida Menck Diógenes Saulo de Lima Saskia Carolina Seulin Vilma Leyton Carlos Augusto Pasqualucci Daniel Romero Muñoz Michael David Osselton Mauricio Yonamine 《Journal of separation science》2012,35(23):3361-3368
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow‐fiber liquid‐phase microextraction in the three‐phase mode. Hollow‐fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 μL of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 μg/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 μg/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates. 相似文献
5.
Abera Gure Francisco J. Lara Negussie Megersa Ana M. García‐Campaña Monsalud del Olmo‐Iruela 《Journal of separation science》2013,36(20):3395-3401
A three‐phase hollow‐fiber liquid‐phase microextraction combined with a capillary LC method using diode array detection was proposed for the determination of six sulfonylurea herbicides, triasulfuron, metsulfuron‐methyl, chlorsulfuron, flazasulfuron, chlorimuron‐ethyl, and primisulfuron‐methyl, in environmental water samples. Different factors that can affect the extraction process such as extraction solvent, acidity of the donor phase, composition and pH of the acceptor phase, salt addition, stirring speed, and extraction time were optimized. Under the optimum conditions, detection and quantitation limits between 0.1 – 1.7 and 0.3 – 5.7 μg/L, respectively, and enrichment factors ranging from 71 to 548 were obtained. The calibration curves were linear within the range of 0.3 – 40 μg/L. Intra‐ and interday RSDs were <6.3 and 8.4%, respectively. The relative recoveries of the spiked ground and river water samples were in the range of 69.4 – 119.2 and 77.4 – 111.7%, respectively. The results of the study revealed that the developed methodology involves an efficient sample pretreatment allowing the preconcentration of analytes, combined with the use of a miniaturized separation technique, suitable for the accurate determination of sulfonylurea herbicides in water. 相似文献
6.
Headspace liquid-phase microextraction of trihalomethanes in drinking water and their gas chromatographic determination 总被引:3,自引:0,他引:3
In the present work, a novel method for the determination of trihalomethanes (THMs) such as chloroform, dichlorobromomethane, chlorodibromomethane and bromoform in drinking water has been described. It is based on coupling headspace liquid-phase microextraction (HS-LPME) with gas chromatography-electron capture detector (GC-ECD). A microdrop of organic solvent at the tip of a commercial microsyringe was used to extract analytes from aqueous samples. Three organic solvents—xylene, ethylene glycol and 1-octanol—were compared and 1-octanol was the most sensitive solvent for the analytes. Extraction conditions such as headspace volume, extraction time, stirring rate, content of NaCl and extraction temperature were found to have significant influence on extraction efficiency. The optimized conditions were 15 ml headspace volume in a 40 ml vial, 10 min extraction time and 800 rpm stirring rate at 20 °C with 0.3 g ml−1 NaCl. The linear range was 1-100 μg l−1 for THMs. The limits of detection (LODs) ranged from 0.15 μg l−1 (for dichlorobromomethane and chlorodibromomethane) to 0.4 μg l−1 (for chloroform); and relative standard deviations (RSD) for most of THMs at the 10 μg l−1 level were below 10%. Real samples collected from tap water and well water were successfully analyzed using the proposed method. The recovery of spiked water samples was from 101 to 112%. 相似文献
7.
《Journal of separation science》2018,41(15):3121-3128
Sarcosine is a potential prostate cancer marker. In this study, we developed a method of three‐phase solvent bar liquid‐phase microextraction combined with high‐performance liquid chromatography to determine sarcosine after derivatization with 4‐dimethylarminoazobenzene‐4‐sulfonyl chloride from human urine. The effects of different extraction conditions on extraction efficiency were investigated and optimized. Under optimum experimental conditions, a calibration graph exhibited linearity over the range of 0.05–25 μmol/L with a correlation coefficient (r2) of 0.9990. The enrichment factor was 168, and the detection limit was 0.02 μmol/L. The method was successfully used to analyze sarcosine in human urine and non‐invasive detection, and good spiked recoveries ranging from 90.5 to 93.6% were obtained. The proposed method exhibited high sensitivity, high enrichment factor, good precision, and a simple setup. It may contribute to the early accurate diagnosis and the progression monitoring of prostatic carcinoma. 相似文献
8.
Simultaneous extraction and quantification of albendazole and triclabendazole using vortex‐assisted hollow‐fiber liquid‐phase microextraction combined with high‐performance liquid chromatography 下载免费PDF全文
Mohammad Asadi Ali Mohammad Haji Shabani Shayessteh Dadfarnia 《Journal of separation science》2016,39(12):2238-2245
A novel, simple, and rapid vortex‐assisted hollow‐fiber liquid‐phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high‐performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3–50.0 and 0.4–50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0–11.0 and 5.0–7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. 相似文献
9.
Hollow‐fiber liquid‐phase microextraction coupled with miniature capillary electrophoresis for the trace analysis of four aliphatic aldehydes in water samples 下载免费PDF全文
Ying Li Fan Yi Yiliang Zheng Yu Wang Jiannong Ye Qingcui Chu 《Journal of separation science》2015,38(16):2873-2879
An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow‐fiber liquid‐phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2‐thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl‐glyoxal), and the limits of detection (S/N = 3) could reach sub‐nanogram‐per‐milliliter level based on hollow‐fiber liquid‐phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90–113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. 相似文献
10.
Richard Young Viorica Lopez-Avila Werner F. Beckert 《Journal of separation science》1996,19(5):247-256
This paper describes the extraction of 20 organochlorine pesticides (OCPs) from water samples using solid-phase microextraction (SPME). Three fused-silica fibers coated or bonded with polydimethylsiloxane (PDMS) of different film thicknesses (20-, 30-, and 100-μm) were evaluated. The extraction time, the effects of stirring and addition of NaCl to the aqueous sample, the linear range and the precision of this technique, and the effect of carryover were examined for 20 analytes and are presented here. A comparison with results using conventional liquid-liquid extraction demonstrate that the SPME technique is well suited as a fast screening technique for OCPs in water samples. 相似文献
11.
Ya‐Li Pan Fang Chen Meng‐Yu Zhang Tian‐Qi Wang Zi‐Chun Xu Wei Zhang Qing‐Cui Chu Jian‐Nong Ye 《Electrophoresis》2013,34(8):1241-1248
A hollow fiber‐based liquid‐phase microextraction method has been developed for enrichment of trace chloroanilines in water samples. Target analytes including aniline, three mono‐chlorinated aniline isomers (o‐chloroaniline, m‐chloroaniline, and p‐chloroaniline) and four mono‐chlorinated methylaniline isomers (2‐chloro‐4‐methylaniline, 3‐chloro‐4‐methylaniline, 4‐chloro‐2‐methylaniline, and 5‐chloro‐2‐methylaniline) were determined by CE with amperometric detection after microextraction. Several factors that affect separation, detection, and extraction efficiency were investigated. Under the optimum conditions, eight aniline compounds could be well separated from other components coexisting in water samples within 25 min, exhibiting a linear calibration over three orders of magnitude (r > 0.998); the obtained enrichment factors were between 51 and 239, and the LODs were in the range of 0.01–0.1 ng/mL. The proposed method has been applied for the analyses of real environmental water and sewage samples with relative recoveries in the range of 83–108%. 相似文献
12.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples. 相似文献
13.
Monosaccharide composition analysis of immunomodulatory polysaccharides by on‐line hollow fiber microextraction with high‐performance liquid chromatography 下载免费PDF全文
Nani Wang Xuping Wang Xiaowen Huang Zhujun Mao Yang Zhang Yong Yu Dan Shou 《Journal of separation science》2016,39(5):818-826
The monosaccharide compositions of functional polysaccharides are essential for structure elucidation and biological activity determination. A sensitive method based on on‐line hollow‐fiber liquid‐phase microextraction with high‐performance liquid chromatography has been established for the analysis of ten monosaccharide compositions (two uronic acids, two amino sugars and six neutral sugars) of the immunomodulatory polysaccharides. After derivatization , the sample was injected into the lumen of a hollow fiber immersed in butyl ether and separated by liquid chromatography. Under optimized conditions, the calibration curves were linear (r ≥ 0.9996) in the range of 10–2000 μmol L?1. The limits of detection were in the range of 0.04–1.58 μmol L?1, and the recoveries were in the range of 92.1–99.6%, which shows that the method is applicable to the analysis of the monosaccharide composition of various polysaccharides. 相似文献
14.
Liquid‐phase microextraction based on two immiscible organic solvents followed by gas chromatography with mass spectrometry as an efficient method for the preconcentration and determination of cocaine,ketamine, and lidocaine in human urine samples 下载免费PDF全文
Yadollah Yamini Shahram Seidi Rouhollah Feizbakhsh Tahmineh Baheri Maryam Rezazadeh 《Journal of separation science》2014,37(17):2364-2371
A new type of liquid‐phase microextraction based on two immiscible organic solvents was optimized and validated for the quantification of lidocaine, ketamine, and cocaine in human urine samples. A hollow‐fiber based microextraction technique followed by gas chromatography coupled with mass spectrometry detection was used to reduce matrix interferences and improve limits of detection. The analytes were extracted from aqueous sample with pH 11.0, into a thin layer of organic solvent (n‐dodecane) sustained in the pores of a hollow fiber, and then into a second organic acceptor (acetonitrile) located inside the lumen of the hollow fiber. With the application of optimized values, good linearity was obtained in the range of 1–500 μg/L for lidocaine and ketamine and 2–500 μg/L for cocaine with the determination coefficient values (r2) >0.9943. The preconcentration factors and limits of detection (S/N > 3) were 250–350 and 0.01–0.05 μg/L, respectively. Intra and interassay precision values were <7.3 and 9.3%, respectively. The method was successfully applied for the determination and quantification of target analytes in human urine samples. 相似文献
15.
以密度小于水的轻质溶剂为萃取剂,建立了无需离心步骤的溶剂去乳化分散液-液微萃取-气相色谱(SD-DLLME-GC)测定水样中多环芳烃的新方法。传统分散液-液微萃取技术一般采用密度大于水的有机溶剂为萃取剂,并需要通过离心步骤促进分相。而本方法以密度比水小的轻质溶剂甲苯为萃取剂,将其与丙酮(分散剂)混合并快速注入水样,获得雾化体系;然后注入乙腈作为去乳化剂,破坏该雾化体系,无需离心,溶液立即澄清、分相;取上层有机相(甲苯)进行GC分析。考察了萃取剂、分散剂、去乳化剂的种类及其体积等因素对萃取率的影响。以40 μL甲苯为萃取剂,500 μL丙酮为分散剂,800 μL乙腈为去乳化剂,方法在20~500 μg/L范围内呈现出良好的线性(r2=0.9942~0.9999),多环芳烃的检出限(S/N=3)为0.52~5.11 μg/L。用所建立的方法平行测定5份质量浓度为40 μg/L的多环芳烃标准水样,其含量的相对标准偏差为2.2%~13.6%。本法已成功用于实际水样中多环芳烃的分析,并测得其加标回收率为80.2%~115.1%。 相似文献
16.
Mohammad Faraji Farshid Noormohammadi Shahryar Jafarinejad Morteza Moradi 《International journal of environmental analytical chemistry》2017,97(8):730-742
In this study, a simple, rapid, low cost, sensitive and environmentally friendly technique, supramolecular solvent microextraction (SM-SME) followed by high performance liquid chromatography-ultraviolet has been proposed to extract carbaryl from water samples. Parameters, affecting the SM-SME performance such as the weight of decanoic acid (DeA), volume of tetrahydrofuran (THF), pH and salt concentration, were studied and optimised. The effect of the pH on the extraction efficiency was evaluated by one–factor-at-a-time methodology, but the other variables were optimised by a face-centred cube central composite design methodology. Optimum extraction conditions were obtained: DeA: 70 mg; THF: 650 µL; salt concentration: 10% (w/v) NaCl and pH = 2–4), and the performance of the proposed method was evaluated. Under the optimum conditions, good linearity (1.0–500 µg L?1, r2 = 0.9994) was obtained. Limit of detection and limit of quantification were 0.3–1.0 µg L?1, respectively. Also, the recoveries of the carbaryl were obtained in the ranged from 96% to 105%. Finally, proposed method was successfully applied for the determination of the carbaryl in the water samples of farms run-off and rivers and satisfactory results were obtained. 相似文献
17.
Three‐phase hollow fiber liquid‐phase microextraction based on a magnetofluid for the analysis of aristolochic acids in plasma by high‐performance liquid chromatography 下载免费PDF全文
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method. 相似文献
18.
Homayon Ahmad Panahi Monireh Chabouk Maryam Ejlali 《Journal of separation science》2014,37(15):2018-2024
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods. 相似文献
19.
Mercedes Villar Navarro María Ramos Payán Rut Fernández‐Torres Miguel A. Bello‐López Manuel Callejón Mochón Alfonso Guiráum Pérez 《Electrophoresis》2011,32(16):2107-2113
The presence of pharmaceuticals in the environment due to growing worldwide consumption has become an important problem that requires analytical solutions. This paper describes a CE determination for several nonsteroidal anti‐inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac, ketorolac, aceclofenac and salicylic acid) in environmental waters using hollow fiber membrane liquid‐phase microextraction. The extraction was carried out using a polypropylene membrane supporting dihexyl ether and the electrophoretic separation was performed in acetate buffer (30 mM, pH 4) using ACN as the organic modifier. Detection limits between 0.25 and 0.86 ng/mL were obtained, respectively. The method could be applied to the direct determination of the seven anti‐inflammatories in wastewaters, and five of them have been determined or detected in different urban wastewaters. 相似文献
20.
M Asensio-Ramos J Hernández-Borges G González-Hernández MÁ Rodríguez-Delgado 《Electrophoresis》2012,33(14):2184-2191
A new and simple method has been developed for the determination of a group of four benzimidazole pesticides (carbendazim/benomyl, thiabendazole, and fuberidazole), a carbamate (carbaryl), and an organophosphate (triazophos), together with two of their main metabolites (2-aminobenzimidazole, metabolite of carbendazim/benomyl, and 1-naphthol, metabolite of carbaryl) in soils. First, an ultrasound-assisted extraction (UAE) was performed, followed by evaporation and reconstitution in water. Then, extraction and preconcentration of the analytes was accomplished by two-phase hollow-fiber liquid-phase microextraction (HF-LPME) using 1-octanol as extraction solvent. Parameters that affect the extraction efficiency in HF-LPME technique (organic solvent, pH of the sample, extraction time, stirring speed, temperature, and ionic strength) were deeply investigated. Optimum HF-LPME conditions involved the use of a 2.0 cm polypropylene fiber filled with 1-octanol to extract 10 mL of an aqueous soil extract at pH 9.0 containing 20% (v/v) of NaCl for 30 min at 1440 rpm. Separation and quantification was achieved by HPLC with fluorescence detection (FD). The proposed optimum UAE-HF-LPME-HPLC-FD methodology provided good calibration, precision, and accuracy results for two soils of different physicochemical properties. LODs were in the range 0.001-6.94 ng/g (S/N = 3). With the aim of extending the validation, the HF-LPME method was also applied to different types of waters (Milli-Q, mineral and run-off), obtaining LODs in the range 0.0002-0.57 μg/L. 相似文献