首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Programmed nucleic acid sequences undergo K+ ion‐induced self‐assembly into G‐quadruplexes and separation of the supramolecular structures by the elimination of K+ ions by crown ether or cryptand ion‐receptors. This process allows the switchable formation and dissociation of the respective G‐quadruplexes. The different G‐quadruplex structures bind hemin, and the resulting hemin–G‐quadruplex structures reveal horseradish peroxidase DNAzyme catalytic activities. The following K+ ion/receptor switchable systems are described: 1) The K+‐induced self‐assembly of the Mg2+‐dependent DNAzyme subunits into a catalytic nanostructure using the assembly of G‐quadruplexes as bridging unit. 2) The K+‐induced stabilization of the anti‐thrombin G‐quadruplex nanostructure that inhibits the hydrolytic functions of thrombin. 3) The K+‐induced opening of DNA tweezers through the stabilization of G‐quadruplexes on the “tweezers’ arms" and the release of a strand bridging the tweezers into a closed structure. In all of the systems reversible, switchable, functions are demonstrated. For all systems two different signals are used to follow the switchable functions (fluorescence and the catalytic functions of the derived hemin–G‐quadruplex DNAzyme).  相似文献   

2.
A single‐nucleotide polymorphism (SNP) detection method was developed by combining single‐base primer extension and salt‐induced aggregation of gold nanoparticles densely functionalized with double‐stranded DNA (dsDNA‐AuNP). The dsDNA‐AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single‐base protrusion at the outermost surface disperse stably, allowing detection of a single‐base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single‐stranded DNA on the AuNP surface, the resulting dsDNA‐AuNP works as a visual indicator of single‐base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single‐base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.  相似文献   

3.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label‐free and DNAzyme‐based strategy to detect DNA ligase activity. This novel strategy relies on the ligation‐trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin‐DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL?1 and a detection limit of 0.2 U mL?1. Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a “split DNA machine” to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL?1.  相似文献   

4.
《Electroanalysis》2005,17(20):1854-1860
A novel type of sol‐gel inorganic‐organic hybrid material coated on glassy carbon electrode used for immobilization of double‐stranded DNA (dsDNA) and study of dsDNA with redox‐active molecules was developed. The hybrid material coating was produced by sol‐gel method with nano hydroxyapatite (HAp)‐polyvinyl alcohol (PVA). The optimum composition of the hybrid material was first examined, and the morphology of the nano HAp‐PVA coatings was investigated with the help of Scanning Electron Microscope (SEM). DsDNA was immobilized in/on the nano HAp‐PVA hybrid coatings by adsorption and the characteristics of the dsDNA/HAp‐PVA/GCE were studied by cyclic voltammetry (CV) using the probes of Co(phen) and Fe(CN) . The results indicate that the dsDNA can be immobilized on the nano porous HAp‐PVA coating effectively and its stability can satisfy the necessity of study on the interactions of dsDNA with redox‐active molecules on the electrode surface. Co(bpy) and Co(phen) were used as the model molecule to study the interactions of dsDNA with redox‐active molecules. Information such as ratio (KOx/KRed) of the binding constant for the oxidized and reduced forms of a bound species, interaction mode, including change in the mode of interaction, and “limiting” ratio K /K at zero ionic strength (μ) can be obtained using dsDNA/HAp‐PVA/GCE with about 2 μg of DNA samples.  相似文献   

5.
We report on a programmable all‐DNA biosensing system that centers on the use of a 4‐way junction (4WJ) to transduce a DNAzyme reaction into an amplified signal output. A target acts as a primary input to activate an RNA‐cleaving DNAzyme, which then cleaves an RNA‐containing DNA substrate that is designed to be a component of a 4WJ. The formation of the 4WJ controls the release of a DNA output that becomes an input to initiate catalytic hairpin assembly (CHA), which produces a second DNA output that controls assembly of a split G‐quadruplex as a fluorescence signal generator. The 4WJ can be configured to produce either a turn‐off or turn‐on switch to control the degree of CHA, allowing target concentration to be determined in a quantitative manner. We demonstrate this approach by creating a sensor for E. coli that could detect as low as 50 E. coli cells mL?1 within 85 min and offers an amplified bacterial detection method that does not require a protein enzyme.  相似文献   

6.
An electrochemical drug‐DNA biosensor was developed for the detection of interaction between the anti‐cancer drug, Temozolomide (TMZ), and DNA sequences by using Differential Pulse Voltammetry at the graphite electrode surfaces. TMZ is a pro‐drug and an alkylating agent that crosses the blood‐brain barrier, so it is mainly used for brain cancers treatment. In this study, we aim to develop a‐proof‐of‐concept study to investigate the effect of TMZ on formerly methylated DNA sequences since TMZ shows its anti‐cancer activity by methylating the DNA. Interaction between TMZ and DNA causes localized distortion of DNA away from an idealized B‐form, resulting in a wider major groove and greater steric accessibility of functional groups in the base of the groove. According to the results, TMZ behaves as a ‘hybridization indicator’ because of its different electrochemical behavior to different strands of DNA. After interaction with TMZ, hybrid (double stranded DNA‐dsDNA) signals decreased dramatically whereas probe (single stranded DNA‐ssDNA) and control signals remain almost unchanged. The signal differences enabled us to distinguish ssDNA and dsDNA without using a label or tag. It is the first study to demonstrate the interaction between the TMZ and dsDNA created from probe and target. We use specific oligonucleotides sequences instead of using long dsDNA sequences.  相似文献   

7.
In this work we present an impedimetric detection system for DNA‐ligand interactions. The sensor system consists of thiol‐modified single‐stranded DNA chemisorbed to gold. Impedance measurements in the presence of the redox system ferri‐/ferrocyanide show an increase in charge transfer resistance (Rct) after hybridisation of a complementary target. Different amounts of capture strands, used for gold electrode modification, result in surface coverages between 3 and 15 pmol/cm2 ssDNA. The relative change in Rct upon hybridisation increases with increasing amount of capture probe on the electrode from 1.5‐ to 4.5‐fold. Impedimetric detection of binding events of a metal‐intercalator ([Ru(phen)3]2+) and a groove binder (spermine) to double‐stranded DNA is demonstrated. Binding of [Ru(phen)3]2+ and spermine exhibits a decrease in charge transfer resistance. Here, the ligand’s interaction leads to electrostatic shielding of the negatively charged DNA backbone. The impedance changes have been evaluated in dependence on the concentration of both DNA binders. Furthermore, the association of a single‐stranded binding protein (SSBP) is found to cause an increase in charge transfer resistance only when incubated with single‐stranded DNA. The specific binding of an anti‐dsDNA antibody to the dsDNA‐modified electrode surface decreases in contrast the interfacial impedance.  相似文献   

8.
The toxic oxidative damage of G‐quadruplexes (G4), linked to neurodegenerative diseases, may arise from their ability to bind and oxidatively activate cellular hemin. However, there have been no precise studies on how telomeric G4 enhances the low intrinsic peroxidase activity of hemin. Herein, a label‐free and nanopore‐based strategy was developed to explore the enhancement mechanism of peroxidase activity of hemin induced by telomeric G4 (d(TTAGGG)n). The nanopore‐based strategy demonstrated that there were simultaneously two different binding modes of telomere G4 to hemin. At the single‐molecule level, it was found that the hybrid structural telomeric G4 directly binds to hemin (the affinity constant (Ka)≈106 m ?1) to form a tight complex, and some of them underwent a topological change to a parallel structure with an enhancement of Ka to approximately 107 m ?1. Through detailed analysis of the topology and peroxidase activity and molecular modeling investigations, the parallel telomere G4/hemin DNAzyme structure was proven to be preferable for high peroxidase activity. Upon strong π–π stacking, the parallel structural telomere G4 supplied a key axial ligand to the hemin iron, which accelerated the intermediate compound formation with H2O2 in the catalytic cycle. Our studies developed a label‐free and single‐molecule strategy to fundamentally understand the catalytic activity and mechanism of telomeric DNAzyme, which provides some support for utilizing the toxic, oxidative‐damage property in cellular oxidative disease and anticancer therapeutics.  相似文献   

9.
Multiple labeling of nucleic acids by intercalative dyes is a promising method for ultrasensitive nucleic acid assays. The properties of the fast dissociation and instability of dye–DNA complexes may prevent from their wide applications in CE‐LIF nucleic acid analysis. Here, we describe an optimum CE focusing method by using appropriately paired sample and separation buffers, Tris‐glycine buffer and Tris‐glycine‐acetic acid buffer. The developed method was applied in both uncoated and polyacrylamide coated fused‐silica capillary‐based CE‐LIF analysis while the sample and separation buffers were conversely used. The complexes of intercalative dye benzoxazolium‐4‐pyridinium dimer and dsDNA were greatly focused (separation efficiency: 1.8 million theoretical plates per meter) by transient isotachophoresis mechanism in uncoated capillary, and moderately focused by transient isotachophoresis in combination of field amplified sample stacking and further stabilized by the paired buffer in polyacrylamide coated capillary. Based on the developed focusing strategy, an ultrasensitive DNA assay was developed for quantitation of calf thymus dsDNA (from 0.02 to 2.14 pM). By the use of an excitation laser power as low as 1 mW, the detection limits of calf thymus dsDNA (3.5 kb) are 7.9 fM in concentration and 2.4×10?22 mol (150 molecules) in mass. We further demonstrate that the non‐gel sieving CE‐LIF analysis of DNA fragments can be enhanced by the same strategy. Since the presented strategy can be applied to uncoated and coated capillaries and does not require special device, it is also reasonable to extend to the applications in chip‐based CE DNA analysis.  相似文献   

10.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

11.
This work demonstrates single-molecule imaging of metal-ion induced double-stranded DNA formation in DNA nanostructures. The formation of the metal ion-mediated base pairing in a DNA origami frame was examined using C-Ag-C and T-Hg-T metallo-base pairs. The target DNA strands containing consecutive C or T were incorporated into the DNA frame, and the binding was controlled by the addition of metal ions. Double-stranded DNA formation was monitored by observing the structural changes in the incorporated DNA strands using high-speed atomic force microscopy (AFM). Using the T-Hg-T base pair, the dynamic formation of unique dsDNA and its dissociation were observed. The formation of an unusual shape of dsDNA with consecutive T-Hg-T base pairs was visualized in the designed nanoscale structure.  相似文献   

12.
Branched tris‐DNA, in which two oligonucleotides of the same sequence and one other oligonucleotide of a different sequence are connected with a rigid central linker, was prepared chemically by using a DNA synthesizer. Two branched tris‐DNA molecules with complementary DNA sequences form dimer and tetramer as well as linear and spherical oligomer complexes. The complex formation was studied by UV/thermal denaturation, enzyme digestion, gel electrophoresis, and AFM imaging.  相似文献   

13.
Nanopores are used in single‐molecule DNA analysis and sequencing. Herein, we show that Fragaceatoxin C (FraC), an α‐helical pore‐forming toxin from an actinoporin protein family, can be reconstituted in sphingomyelin‐free standard planar lipid bilayers. We engineered FraC for DNA analysis and show that the funnel‐shaped geometry allows tight wrapping around single‐stranded DNA (ssDNA), resolving between homopolymeric C, T, and A polynucleotide stretches. Remarkably, despite the 1.2 nm internal constriction of FraC, double‐stranded DNA (dsDNA) can translocate through the nanopore at high applied potentials, presumably through the deformation of the α‐helical transmembrane region of the pore. Therefore, FraC nanopores might be used in DNA sequencing and dsDNA analysis.  相似文献   

14.
High‐speed atomic force microscopy (HS‐AFM) is widely employed in the investigation of dynamic biomolecular processes at a single‐molecule level. However, it remains an open and somewhat controversial question, how these processes are affected by the rapidly scanned AFM tip. While tip effects are commonly believed to be of minor importance in strongly binding systems, weaker interactions may significantly be disturbed. Herein, we quantitatively assess the role of tip effects in a strongly binding system using a DNA origami‐based single‐molecule assay. Despite its femtomolar dissociation constant, we find that HS‐AFM imaging can disrupt monodentate binding of streptavidin (SAv) to biotin (Bt) even under gentle scanning conditions. To a lesser extent, this is also observed for the much stronger bidentate SAv–Bt complex. The presented DNA origami‐based assay can be universally employed to quantify tip effects in strongly and weakly binding systems and to optimize the experimental settings for their reliable HS‐AFM imaging.  相似文献   

15.
16.
The fluorescence emission of the dual‐fluorophore Ca2+ ion sensor molecule, calcium‐green 2 (CG‐2), has been characterized using dual‐polarization imaging at the single‐molecule level. By comparing the fluorescence intensity of individual CG‐2 molecules in two mutually orthogonal polarization image channels, information about the relative orientation of the two constituent fluorophores in the molecule is obtained. Experimental results from polarization measurements are compared with those predicted from a geometric model based on coupled‐fluorophores that are randomly distributed in space. The results confirm previous optical spectroscopy‐based predictions of the orientation of CG‐2′s fluorophores, and the general applications of this dual‐polarization imaging approach for characterizing the optical properties of molecules containing multiple fluorophores is discussed.  相似文献   

17.
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single‐molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single‐molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single‐molecule polarization and FRET studies thus revealed the real‐time dynamics of the ATP‐hydrolysis‐dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.  相似文献   

18.
A benzimidazole derivate, 2‐(1H‐benzimidazol‐2‐yl) phenol (2‐Bip) and its interaction mechanism with sequence specific DNA was examined with Differential Pulse Voltammetry (DPV). We, for the first time, investigated the effect of 2‐Bip on sequence specific DNA with electrochemical methods by evaluating both guanine and 2‐Bip oxidation signal changes. In the study, probe sequences were immobilized to the surface of the electrodes and then hybridization was achieved by sending the complementary target onto the probe modified electrodes. Following the hybridization, 2‐Bip solution was interacted with probe and hybrid sequences to see the effect of 2‐Bip on different DNA sequences. The binding constant (K), toxicity (S%) and thermodynamic parameters, i. e., Gibbs free energy (ΔG°) of 2‐Bip‐DNA complexes were evaluated. K was calculated as 5×105 and the change in the ΔG° was found as ?32.50 kJ mol?1, which are consistent well with the literature. Furthermore, S% showed that 2‐Bip is moderately toxic to single stranded DNA (ssDNA) and toxic to double stranded DNA (dsDNA). From our experimental data, we made four conclusions (i) 2‐Bip affects both ssDNA and dsDNA, (ii) 2‐Bip interaction mode with DNA could be non‐covalent interactions, (iii) 2‐Bip could be used as new DNA hybridization indicator due to its distinct effects on ssDNA and dsDNA, (iv) 2‐Bip could be used as a drug molecule for its DNA effect.  相似文献   

19.
Aiming at the detection of ultralow concentration target progesterone (Pro), a novel electrochemical aptasensor based on DNAzyme concatamers signal amplification strategy was proposed. The strategy consists of target DNA strands (TDNAs), and two different hairpin DNA molecules (H1 and H2). The signal is amplified by the large amount of DNAzyme. The TDNAs modified on the electrode open H1 structures in sequence and propagate a reaction of hybridization events between two alternating hairpins (H1and H2) to obtain abundant DNAzyme concatamers. Upon target Pro introduction, a specific Pro‐TDNAs reaction was executed, thereby resulting in the release of DNAzyme concatamers from the electrode. Subsequent differential pulse voltammetry(DPV) detection of aminoazobenzene (DAP) resulting by DNAzyme catalyze the oxidation of o‐phenylenediamine (OPD) with the aid of hydrogen peroxide (H2O2). Likewise, a small amount of target Pro can efficiently induce the release of a large number of the DNAzyme from the electrode in the form of DNAzyme concatamer. Under optimal conditions, the the proposed assay presents good electrochemical responses for determination of target Pro in the range of 0.5 to 15 ng/mL with the detection limit of 0.36 ng/mL. In addition, the resulting sensor can successfully distinguish Pro from coexisting interfering substance and show good stability and high repeatability. What's more, the methodology has also been demonstrated by assaying Pro‐spiked samples in serum.  相似文献   

20.
A three‐dimensional DNA hydrogel was generated by self‐assembly of short linear double‐stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self‐assembly were determined by diffusion‐ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature‐dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G′ being significantly larger than that for the loss modulus G′′. Frequency‐dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号