首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel compound series of tri‐substituted imidazole/thiazole derivatives ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i ) were prepared by Radziszewski reaction. Benzil ( 1 ), ammonium acetate or ammonium thiocynate, and 1‐phenyl‐3‐(p‐substituted phenyl)‐1H‐pyrazole‐4‐carbaldehyde ( 2a , 2b , 2c , 2d , 2e , 2f , 2g ) were reacted to give the desired product. Synthesized compounds were characterized by elemental analysis (CHNS) and spectral analysis (FTIR, 1H and 13C FT NMR, and LC–MS). All the compounds were screened for their antibacterial, antifungal, and antimycobacterial activities. Antimicrobial activity was evaluated against some bacterial strains such as Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), and the H37Rv strain of Mycobacterium tuberculosis, and the fungal activity was observed against strains, for example, Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), and Aspergillus clavatus (MTCC 1323). All the synthesized compounds were found to possess moderate to excellent activity against the above selected strains.  相似文献   

2.
2‐(3,4‐Dichlorophenylimino)‐5‐((3‐(p‐substitutedphenyl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene) thiazolidin‐4‐one has been selected as a target bio‐active molecules. Newly synthesized compounds were screened with Eschericha coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442) for antibacterial, Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), Aspergillus clavatus (MTCC 1323) for antifungal activity and H 37 Rv for antimycobacterial activity. Compounds 3a , 3c , 3d , 3e , and 3h are potentially active against Staphylococcus aureus , while 3h is active against C. albicans . Compounds 3d and 3f are active against H 37Rv for mycobacterium tuberculosis. Other possesses moderate to good activity. The structures of synthesized compounds were firmly established by well‐defined elemental analyses (C, H, N, S/O) and spectral analysis technique likes, IR, 1H NMR and GC–MS.  相似文献   

3.
Novel dihydro-1H-imidazole-2-yl)-[1,1′-biphenyl]-2-carboxamides ( 4a-l ) was achieved using a three-step synthesis process and evaluated as antimicrobial agents. These compounds were characterized through FTIR, NMR, LCMS and evaluated for DNA gyrase inhibition potentials and antimicrobial properties against Gram-negative bacteria Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 424), Klebsiella pneumoniae MTCC 530 and Gram-positive bacteria Staphylococcus aureus (MTCC 3160), Corynebacterium diphtheriae (MTCC 116) and Streptococcus pyogenes (MTCC 442). Excellent DNA gyrase inhibition exhibited by compound 4f (IC50 0.2 μM and relative percentage activity 96.24%). A broad spectrum of antimicrobial activity showed by compounds 4d , 4f and 4 k with a Minimal Inhibitory Constant (MIC) of 1.05, 1.35 and 1.25 μg mL−1, respectively.  相似文献   

4.
A new series of 3‐(arylaminomethyl)‐5‐(5‐methyl‐1‐phenyl‐1H‐4‐pyrazolyl)‐2,3‐dihydro‐1,3,4‐oxadiazole‐2‐thiones 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j has been synthesized by the reaction of 5‐(5‐methyl‐1‐phenyl‐1H‐4‐pyrazolyl)‐1,3,4‐oxadiazol‐2‐ylhydrosulfide 5 with formaldehyde and corresponding anilines. The chemical structures of newly synthesized compounds were elucidated by IR, 1H, 13C‐NMR, MS, and elemental analyses. The compounds 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j were evaluated for their antibacterial activity against three representative Gram positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11) and Staphylococcus aureus (MTCC 96), and three Gram negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39) and Chromobacterium violaceum. Among the screened 6b , 6d , 6i , and 6j in which oxadiazole moiety bearing 4‐fluoroanilinomethyl, 4‐chloroanilinomethyl, 2‐trifluoromethylanilinomethyl, and 2,5‐difluoroanilinomethyl groups, respectively, showed high activity against all the microorganisms used. In addition these compounds were also screened for their antifungal activity against four fungal organisms viz. Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), and Trichophyton mentagrophytes (IFO 40996). Most of these new compounds showed appreciable activity against test fungi, and emerged as potential molecules for further development.  相似文献   

5.
Syntheses and antimicrobial behavior of the alkyl linked new bispyrazolines 4a , 4b , 4c , 4d , 4e , 4f , 4g have been investigated. These compounds exhibited better antimicrobial activities as compared with their corresponding bischalcones. The structures of the prepared compounds ( 3a , 3b , 3c , 3d , 3e , 3f , 3g and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were determined from the rigorous analysis of their IR, 1H NMR, 13C NMR, and mass spectral parameters.  相似文献   

6.
A series of novel 6‐2‐methoxy‐5‐[4‐methoxy‐3‐(3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazol‐6‐yl)benzyl]phenyl‐3‐aryl[1,2,4]triazolo[3,4‐b][1,3,4]oxadiazoles 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j has been synthesized and characterized via IR, 1H NMR, 13C NMR, MS, and elemental analyses. Compounds 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j were also screened for their antibacterial activity against Gram‐positive bacteria viz. Bacillus subtilis (MTCC 441), Bacillus sphaericus (MTCC 11), and Staphylococcus aureus (MTCC 96), and Gram‐negative bacteria viz. Pseudomonas aeruginosa (MTCC 741), Klobsinella aerogenes (MTCC 39), and Chromobacterium violaceum (MTCC 2656). The antibacterial screening reveal that the presence of 2,4‐difluorophenyl ( 7e ) or 4‐nitrophenyl ( 7f ) of 2‐pyrazyl ( 7i ), or 2‐furyl ( 7j ) on the triazole moiety exhibited potent inhibitory activity comparable with the standard drug streptomycin, at the tested concentrations, and emerged as potential molecules for further development.  相似文献   

7.
8.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

9.
A family of 11 nitrophenol 2-nitro-5-(4-substituted phenylquinolin-2-yl)phenol derivatives (4, 4a-j) was effectively synthesized as antimicrobial medications. A mixture of the substituted 3-hydroxy-4-nitrobenzaldehyde substituted aromatic amine and substituted phenylacetylenes were used to synthesis the title compounds 4, 4a-j. Antimicrobialactivity potential of 4, 4a-j was evaluated against Streptococcus pyogenes (MTCC 442), Staphylococcus aureus (MTCC 96), Pseudomonas aeruginosa (MTCC 424), and Escherichia coli (MTCC 443). DNA gyrase inhibition studies carried out to understand the mechanism ofaction of the antimicrobial effect of target compounds. HRBC membrane stabilization (in vitro) property was also assessed as a representative human cellular cytotoxic effect of 4, 4a-j since HRBC alike lysosomal cells and the lysozyme activity leads to inflammation and its adverse effects in cellular systems. Results reveal that compounds 4c and 4h have remarkable antibacterial activity and screened for further preclinical studies.  相似文献   

10.
A series of new 4,6‐diaryl‐4,5‐dihydro‐3‐hydroxy‐2H‐indazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k were synthesized by the cyclization of ethyl 2‐oxo‐4,6‐diarylcyclohex‐3‐ene carboxylates 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k . The compounds were characterized by IR, 1H NMR, 13C NMR, 2D NMR, and elemental analysis. The synthesized compounds were evaluated for in vitro antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger, Aspergillus flavus, and Rhizopus sp. Most of the compounds exhibited good activity against the tested organisms. J. Heterocyclic Chem.,, (2012).  相似文献   

11.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

12.
In the present study, a series of 20 indane‐based 1,5‐benzothiazepines ( 5a – t ) has been prepared derived from 3‐phenyl‐2,3‐dihydro‐1H ‐inden‐1‐one ( 1 ). All the synthesized 1,5‐benzothiazepines ( 5a – t ) were screened for their in vitro antimicrobial activities against four bacteria [Bacillus subtilis (MTCC 441), Staphylococcus epidermidis (MTCC 6880), Escherichia coli (MTCC 1652), and Pseudomonas aeruginosa (MTCC 424)] and two fungi [Candida albicans (MTCC 227) and Aspergillus niger (MTCC 8189)]. Among all the tested derivatives, 5n and 5o against E. coli displayed more inhibitory activity than that of the reference drug, ciprofloxacin, while the derivatives 5c , 5m – o , 5s , and 5t against C. albicans , and 5d , 5e , 5n , 5o , 5s , and 5t against A. niger were found to be more potent than the standard drug, that is, fluconazole.  相似文献   

13.
We have described the conventional and microwave method for the synthesis of N-(4-((2-chloroquinolin-3-yl)methylene)-5-oxo-2-phenyl-4,5-dihydro-1H-imidazol-1-yl)(aryl)amides 3a–l. It is observed that the solvent-free microwave thermolysis is a convenient, rapid, high-yielding, and environmental friendly protocol for the synthesis of quinoline based imidazole derivatives when compared with conventional reaction in a solution phase. Antimicrobial activity of the newly synthesized compounds is screened in vitro on the following microbial cultures: Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), Aspergillus clavatus (MTCC 1323). All the synthesized bio-active molecules are tested for their in vitro antimicrobial activity by bioassay namely serial broth dilution. Among these compounds 3c, 3d, 3f, 3h and 3j show significant potency against different microbial strains. All the compounds have been characterized by IR, 1H NMR, 13C NMR and mass spectral data. On the basis of statistical analysis, it is observed that these compounds give significant co-relation.  相似文献   

14.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

15.
In the present study, 20 new tetracyclic 1,4-benzothiazines (4a4 t) were conveniently synthesized in good yields and characterized by different spectral and physical techniques. The in vitro antimicrobial evaluation of the synthesized benzothiazine derivatives was performed by serial dilution against two Gram-positive bacteria [Bacillus subtilis (MTCC 441) and Staphylococcus epidermidis (MTCC 6880)], two Gram-negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)], and two fungal strains [Candida albicans (MTCC 227) and Aspergillus niger (MTCC 8189)]. The derivatives 4 l and 4 t were found to be more potent than standard drug, i.e., fluconazole, against A. niger and C. albicans, respectively.  相似文献   

16.
A series of novel [4‐(1,2,3‐thiadiazol‐4‐yl)phenoxy]methylene anchored 1,3,4‐triazoles ( 8a , 8b , 8c , 8d , 8e , 8f , 8g , 8h ) and 1,3,4‐thiadiazoles ( 9a , 9b , 9c , 9d , 9e , 9f , 9g , 9h , 9i ) were synthesized from thiosemicarbazide ( 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i , 7j ). The structures of these newly synthesized compounds were confirmed on the basis of IR, 1H‐NMR, mass spectral techniques, and elemental analysis. The in vitro antimicrobial screenings of the synthesized compounds were carried out against four bacterial pathogens, namely Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa and three fungal pathogens Candida albicans, Aspergillus niger and Aspergillus clavatus, using broth microdilution minimum inhibitory concentration method. The compounds 7d , 7j , 8a , 9a , 9b , and 9i exhibited promising antibacterial activity against the tested strains, whereas some compounds were found to be active against one of the tested bacterial strains.  相似文献   

17.
In this study, the antimicrobial effect and DNA gyrase inhibitor potential of vanillin-based pyridyl–substituted fluoro-indolines were evaluated. These compounds are synthesized and established through green-chemistry approaches. The inhibition effect on both DNA gyrase A and B was evaluated in silico and in vitro. Agar well diffusion method–based antimicrobial activity against Gram-ve Pseudomonas aeruginosa (MTCC 424) and Escherichia coli (MTCC 443), Gram+ve Streptococcus pyogenes (MTCC 442) and Staphylococcus aureus (MTCC 96), and a clinical isolate of Candida albicans (Fungi) was evaluated. The cytotoxicity of the compounds was assessed over macrophages using the MTT assay. In the results, the target compounds exhibited a broad-spectrum antimicrobial activity against both bacterial types and fungal.  相似文献   

18.
A series of multifunctional 2‐amino‐5‐cyano‐4‐[(2‐aryl)‐1H‐indol‐3‐yl]‐6‐hydroxypyrimidines ( 4a , 4b , 4c , 4d , 4e , 4f ) was synthesized by multicomponent reaction of 3‐formylindole ( 1 ), cyanoethylacetate ( 2 ), and guanidine hydrochloride ( 3 ) with NaOH by using green chemical techniques, viz. microwave irradiation and grindstone technology. The same reactants when refluxed in ethanol also gave titled compounds ( 4a , 4b , 4c , 4d , 4e , 4f ). Compared with conventional procedure, the reaction can be carried out under milder conditions, requiring a shorter reaction time and giving higher yields following the green chemistry methodology. All the synthesized compounds have been characterized on the basis of elemental analyses and spectral data (IR, 1H NMR, 13C NMR, and mass). All synthesized compounds were also evaluated for their antimicrobial activity against nine pathogenic bacteria, antifungal activity against Rhizopus stolonifer, Aspergillus flavus, and Fusarium oxysporum and antibacterial activity against Escherichia coli and Pseudomonas aeruginosa at different concentrations. Most of the compounds showed mild to moderate activity.  相似文献   

19.
A green and efficient synthesis of 4‐heteryl‐quinolines ( 9a , 9b , 9c , 9d ), ( 10a , 10b , 10c , 10d ) and ( 11a , 11b , 11c , 11d ) has been described using PEG‐600 as a green solvent. Initially, 4‐chloro‐2‐methylquinolines ( 5a , 5b , 5c , 5d ) on reaction with aromatic heterocyclic thiols ( 6 ), ( 7 ), and ( 8 ) using PEG‐600 at 100°C for 30–40 min resulted in ( 9 ), ( 10 ), and ( 11 ) in good yields. Alternatively, ( 9 ), ( 10 ), and ( 11 ) could also be prepared in dimethylformamide using K2CO3 as base and tetrabutylammonium bromide as phase transfer catalyst at 100°C for 1–2 h. All the compounds were synthesized and characterized by IR, NMR, mass spectroscopy, and 13C NMR analysis. All synthesized compounds were screened for their antibacterial activity against clinical strains that include Gram‐positive (Bacillus subtilis MTCC 121, staphylococcus aureus MLS‐16 MTCC 2940, Micrococcus lutes MTCC 2470, and Staphylococcus aureus MTCC 96) and Gram‐negative bacteria (Candida albicans MTCC 3017, Klebsiella planticola MTCC 530, Escherichia coli MTCC 739, and Pseudomonas aeruginosa MTCC 2453). The results revealed that compounds ( 9a , 9d , 10a , 10c , 11b , and 11d ) exhibited significant antibacterial activity almost equal to the standard drug, that is, Ciprofloxacin.  相似文献   

20.
Syntheses of new bispyrazolines 4a , 4b , 4c , 4d , 4e , 4f , 4g built around the aliphatic linkers of varying lengths have been described. The intermediate bischalcones and final bishetrocyclics were also evaluated for their antimicrobial activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号