首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

2.
The title CdII coordination framework, [Cd(C15H8O5)(H2O)]n or [Cd(bpdc)(H2O)]n [H2bpdc is 2‐(4‐carboxybenzoyl)benzoic acid], has been prepared and characterized using IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Each CdII centre is six‐coordinated by two O atoms from one 2‐(4‐carboxylatobenzoyl)benzoate (bpdc2−) ligand in chelating mode, three O‐donor atoms from three other bpdc2− anions and one O atom from a coordinated water molecule in an octahedral coordination environment. Two crystallographically equivalent CdII cations are bridged by one O atom of the 2‐carboxylate group of one bpdc2− ligand and by both O atoms of the 4‐carboxylate group of a second bpdc2− ligand to form a binuclear [(Cd)2(O)(OCO)] secondary building unit. Adjacent secondary building units are interlinked to form a one‐dimensional [Cd(OCO)2]n chain. The bpdc2− ligands link these rod‐shaped chains to give rise to a complex two‐dimensional [Cd(bpdc)]n framework with a 4,4‐connected binodal net topology of point symbol {43.62.8}. The compound exhibits a strong fluorescence emission and typical ferroelectric behaviour in the solid state at room temperature.  相似文献   

3.
The CdII three‐dimensional coordination poly[[[μ4‐1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene]bis(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato)dicadmium(II)] dihydrate], {[Cd2(C9H4O6)2(C8H10N6)]·2H2O}n , (I), has been synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O, benzene‐1,3,5‐tricarboxylic acid (1,3,5‐H3BTC) and 1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene (1,4‐btbe). The IR spectrum suggests the presence of protonated carboxylic acid, deprotonated carboxylate and triazolyl groups. The purity of the bulk sample was confirmed by elemental analysis and X‐ray powder diffraction. Single‐crystal X‐ray diffraction analysis reveals that the CdII ions adopt a five‐coordinated distorted trigonal–bipyramidal geometry, coordinated by three O atoms from three different 1,3,5‐HBTC2− ligands and two N atoms from two different 1,4‐btbe ligands; the latter are situated on centres of inversion. The CdII centres are bridged by 1,3,5‐HBTC2− and 1,4‐btbe ligands into an overall three‐dimensional framework. When the CdII centres and the tetradentate 1,4‐btbe ligands are regarded as nodes, the three‐dimensional topology can be simplified as a binodal 4,6‐connected network. Thermogravimetric analysis confirms the presence of lattice water in (I). Photoluminescence studies imply that the emission of (I) may be ascribed to intraligand fluorescence.  相似文献   

4.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

5.
The title compound, (C24H24N7)2[Cd5Cl16(H2O)4]·H2O, contains a [Cd5Cl16(H2O)4]6− anion, two triply protonated tris[(1H‐benzimidazol‐3‐ium‐2‐yl)methyl]amine cations and one solvent water molecule. The structure of the anion is a novel chloride‐bridged pentanuclear cluster. The five unique CdII centres have quite different coordination environments. Two of the central hexacoordinated CdII cations have a CdOCl5 chromophore, in which each CdII cation is ligated by four bridging chloride ligands, one terminal chloride ligand and one water molecule, adopting a distorted octahedral environment. The third central CdII cation is octahedrally coordinated by four bridging chloride ligands and two water molecules. Finally, the two terminal CdII cations are pentacoordinated by two bridging and three terminal chloride ligands and adopt a trigonal–bipyramidal geometry. A three‐dimensional supramolecular network is formed through intra‐ and intermolecular O—H...O, O—H...Cl, N—H...Cl and N—H...O hydrogen bonds and π–π interactions between the cations and anions.<!?tpb=20.6pt>  相似文献   

6.
The title compound, {[Cd2(C9HNO8)(H2O)4]·H2O}n, consists of two crystallographically independent CdII cations, one tetrabasic pyridine‐2,3,5,6‐tetracarboxylate (pdtc) anion, four coordinated water molecules and one solvent water molecule. The CdII cations have distorted square‐antiprismatic (one pyridine N, six carboxylate O and one water O atom) and octahedral (three carboxylate O and three water O atoms) coordination environments. Each pdtc ligand employs its pyridine and carboxylate groups to chelate and bridge seven CdII cations. The square‐antiprismatic coordinated CdII cations are linked by pdtc ligands into a lamellar framework structure, while the octahedral coordinated CdII cations are bridged by the μ2‐carboxylate O atoms and the pdtc ligands into a chain network that further joins neighbouring lamellae into a three‐dimensional porous network. The cavities are filled with solvent water molecules that are linked to the host through complex hydrogen bonding.  相似文献   

7.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

8.
3‐(Pyridin‐4‐yl)acetylacetone (HacacPy) acts as a pyridine‐type ligand towards CdII and HgII halides. With CdBr2, the one‐dimensional polymer [Cd(μ‐Br)2(HacacPy)Cd(μ‐Br)2(HacacPy)2] is obtained in which five‐ and six‐coordinated CdII cations alternate in the chain direction. Reaction of HacacPy with HgBr2 results in [Hg(μ‐Br)Br(HacacPy)], a polymer in which each HgII centre is tetracoordinated. In both compounds, each metal(II) cation is N‐coordinated by at least one HacacPy ligand. Equimolar reaction between these CdII and HgII derivatives, either conducted in ethanol as solvent or via grinding in the solid state, leads to ligand redistribution and the formation of the well‐ordered bimetallic polymer catena‐poly[[bromidomercury(II)]‐μ‐bromido‐[aquabis[4‐hydroxy‐3‐(pyridin‐4‐yl)pent‐3‐en‐2‐one]cadmium(II)]‐di‐μ‐bromido], [CdHgBr4(C10H11NO2)2(H2O)]n or [{HgBr}(μ‐Br){(HacacPy)2Cd(H2O)}(μ‐Br)2]. HgII and CdII cations alternate in the [100] direction. The HacacPy ligands do not bind to the HgII cations, which are tetracoordinated by three bridging and one terminal bromide ligand. The CdII centres adopt an only slightly distorted octahedral coordination. Three bromide ligands link them in a (2 + 1) pattern to neighbouring HgII atoms; two HacacPy ligands in a cis configuration, acting as N‐atom donors, and a terminal aqua ligand complete the coordination sphere. Classical O—H…Br hydrogen bonds stabilize the polymeric chain. O—H…O hydrogen bonds between aqua H atoms and the uncoordinated carbonyl group of an HacacPy ligand in a neighbouring strand in the c direction link the chains into layers in the (010) plane.  相似文献   

9.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

10.
Photocatalysis is a green technology for the treatment of all kinds of contaminants and has advantages over other treatment methods. Recently, much effort has been devoted to developing new photocatalytic materials based on metal–organic frameworks for use in the degradation of many kinds of organic contaminants. With the aim of searching for more effective photocatalysts, the title three‐dimensional coordination polymer, [Cd2(C8H4O4)2(C18H16N2O2)]n, was prepared. The asymmetric unit contains one CdII cation, one benzene‐1,2‐dicarboxylate anion (denoted L2−) and half of a centrosymmetric 1,4‐bis(pyridin‐3‐ylmethoxy)benzene ligand (denoted bpmb). Each CdII centre is five‐coordinated by four carboxylate O atoms from two L2− ligands and by one N atom from a bpmb ligand, forming a disordered pentagonal pyramidal coordination geometry. The CdII centres are interlinked by L2− ligands to form a one‐dimensional [Cd2L2]n chain. Adjacent chains are further connected by bpmb linkers, giving rise to a two‐dimensional network, and these networks are pillared by bpmb to afford a three‐dimensional framework with a 33.42.63.71.81 topology. Each grid in the framework has large channels which are filled mainly by the two other equivalent frameworks to form a threefold interpenetrating net. The compound exhibits relatively good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

11.
In the title coordination compound, [Cd(C8H3NO6)(C5H8N3)0.5(H2O)]n, each CdII atom is six‐coordinated in a distorted octahedral environment surrounded by three carboxylate O atoms from two different 5‐nitroisophthalate (5‐NIP2−) ligands, two N atoms from two distinct 1,6‐bis(1,2,4‐triazol‐1‐yl)hexane (bth) ligands and one water molecule. The CdII centres are bridged by the bth ligands, which lie across centres of inversion, to give a honeycomb‐like two‐dimensional layer structure; the layers are further connected by the bridging 5‐NIP2− ligands with a κ21‐μ2 coordination mode to generate the final three‐dimensional structure. Topologically, taking the the CdII atoms and the bth ligands as different four‐connected nodes and the 5‐NIP2− ligands as linkers, the three‐dimensional structure can be simplified to a rare `mesh of trees' (mot) net with the Schäfli symbol (66)(64.82)2.  相似文献   

12.
A novel three‐dimensional coordination polymer, {[Pb(C14H8N2O4)(H2O)]·0.5C12H10N2}n, has been synthesized by hydrothermal reaction of Pb(OAc)2·3H2O (OAc is acetate), 2,2′‐(diazene‐1,2‐diyl)dibenzoic acid (H2L) and 1,2‐bis(pyridin‐4‐yl)ethylene (bpe). The asymmetric unit contains a crystallographically independent PbII cation, one L2− ligand, an aqua ligand and half a bpe molecule. Each PbII centre is seven‐coordinated by six O atoms of bridging–chelating carboxylate groups from L2− ligands and by one O atom from a coordinated water molecule. The PbII cations are bridged by L2− ligands, forming [PbO2]n chains along the a axis. These chains are further connected by L2− ligands along the b and c axes to give a three‐dimensional framework with a 41263 topology. The channel voids are occupied by bpe molecules.  相似文献   

13.
The asymmetric unit of the title compound, [Cd(C8H4O4)(C17H8ClN5)(H2O)]n, contains one CdII atom, two half benzene‐1,4‐dicarboxylate (1,4‐bdc) anions, one 11‐chloropyrido[2′,3′:2,3]pyrimidino[5,6‐f][1,10]phenanthroline (L) ligand and one coordination water molecule. The 1,4‐bdc ligands are on inversion centers at the centroids of the arene rings. The CdII atom is six‐coordinated by two N atoms from one L ligand, three carboxylate O atoms from two different 1,4‐bdc ligands and one water O atom in a distorted octahedral coordination sphere. Each CdII center is bridged by the 1,4‐bdc dianions to give a one‐dimensional chain. π–π stacking interactions between L ligands of neighboring chains extend adjacent chains into a two‐dimensional supramolecular (6,3) network. Neighboring (6,3) networks are interpenetrated in an unusual inclined mode, resulting in a three‐dimensional framework. Additionally, the water–carboxylate O—H...O hydrogen bonds observed in the network consolidate the interpenetrating nets.  相似文献   

14.
The title complexes [M(sac)2(mpy)2] [sac is saccharinate (C7H4NO3S) and mpy is 2‐pyridyl­methanol (C6H7NO)], with M = ZnII and CdII, are isostructural and consist of neutral mol­ecules. The ZnII or CdII cations are octahedrally coordinated by the two neutral mpy and two anionic sac ligands. The mpy ligand acts as a bidentate donor through the amine N and hydroxyl O atoms. The sac ligands exhibit an ambidentate coordination behaviour; one is N‐coordinated and the other is O‐coordinated within the same coordination octahedron. The crystal packing is determined by C—H?O‐type hydrogen bonding, as well as by weak py–py and sac–sac aromatic π–π‐stacking interactions.  相似文献   

15.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

16.
The title compound, {[Cd2(C10H12N2O8)(H2O)]·H2O}n, consists of two crystallographically independent CdII cations, one ethylenediaminetetraacetate (edta) tetraanion, one coordinated water molecule and one solvent water molecule. The coordination of one of the Cd atoms, Cd1, is composed of five O atoms and two N atoms from two tetraanionic edta ligands in a distorted pentagonal–bipyramidal coordination geometry. The other Cd atom, Cd2, is six‐coordinated by five carboxylate O atoms from five edta ligands and one water molecule in a distorted octahedral geometry. Two neighbouring Cd1 atoms are bridged by a pair of carboxylate O atoms to form a centrosymmetric [Cd2(edta)2]4− unit located on the inversion centre, which is further extended into a two‐dimensional layered structure through Cd2—O bonds. There are hydrogen bonds between the coordinated water molecules and carboxylate O atoms within the layer. The solvent water molecules occupy the space between the layers and interact with the host layers through O—H...O and C—H...O interactions.  相似文献   

17.
The design and synthesis of new organic lgands is important to the rapid development of coordination polymers (CPs). However, CPs based on asymmetric ligands are still rare, mainly because such ligands are usually expensive and more difficult to synthesize. The new asymmetric ligand 4‐[4‐(1H‐imidazol‐1‐yl)phenyl]pyridine (IPP) has been used to construct the title one‐dimensional coordination polymer, catena‐poly[[[aqua{4‐[4‐(1H‐imidazol‐1‐yl‐κN3)phenyl]pyridine}cadmium(II)]‐μ‐5‐hydroxybenzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3] monohydrate], {[Cd(C8H4O5)(C14H11N3)2(H2O)]·H2O}n, under hydrothermal reaction of IPP with CdII in the presence of 5‐hydroxyisophthalic acid (5‐OH‐H2bdc). The CdII cation is coordinated by two N atoms from two distinct IPP ligands, three carboxylate O atoms from two different 5‐OH‐bdc2− dianionic ligands and one water O atom in a distorted octahedral geometry. The cationic [Cd(IPP)2]2+ nodes are linked by 5‐OH‐bdc2− ligands to generate a one‐dimensional chain. These chains are extended into a two‐dimensional layer structure via O—H…O and O—H…N hydrogen bonds and π–π interactions.  相似文献   

18.
Coordination polymers (CPs) built by coordination bonds between metal ions/clusters and multidentate organic ligands exhibit fascinating structural topologies and potential applications as functional solid materials. The title coordination polymer, poly[diaquabis(μ4‐biphenyl‐3,4′,5‐tricarboxylato‐κ4O3:O3′:O4′:O5)tris[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]dicopper(II)dicopper(I)], [CuII2CuI2(C15H7O6)2(C12H10N4)3(H2O)2]n, was crystallized from a mixture of biphenyl‐3,4′,5‐tricarboxylic acid (H3bpt), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and copper(II) chloride in a water–CH3CN mixture under solvothermal reaction conditions. The asymmetric unit consists of two crystallographically independent Cu atoms, one of which is CuII, while the other has been reduced to the CuI ion. The CuII centre is pentacoordinated by three O atoms from three bpt3− ligands, one N atom from a 1,4‐bib ligand and one O atom from a coordinated water molecule, and the coordination geometry can be described as distorted trigonal bipyramidal. The CuI atom exhibits a T‐shaped geometry (CuN2O) coordinated by one O atom from a bpt3− ligand and two N atoms from two 1,4‐bib ligands. The CuII atoms are extended by bpt3− and 1,4‐bib linkers to generate a two‐dimensional network, while the CuI atoms are linked by 1,4‐bib ligands, forming one‐dimensional chains along the [20] direction. In addition, the completely deprotonated μ4‐η1111 bpt3− ligands bridge one CuI and three CuII cations along the a (or [100]) direction to form a three‐dimensional framework with a (103)2(10)2(42.6.102.12)2(42.6.82.10)2(8) topology via a 2,2,3,4,4‐connected net. An investigation of the magnetic properties indicated a very weak ferromagnetic behaviour.  相似文献   

19.
Colourless crystals of the title compound, [Cd2(C7H4IO2)4(C12H10N2)(H2O)2]n, were obtained by the self‐assembly of Cd(NO3)2·4H2O, 1,2‐bis(pyridin‐4‐yl)ethene (bpe) and 4‐iodobenzoic acid (4‐IBA). Each CdII atom is seven‐coordinated in a pentagonal–bipyramidal coordination environment by four carboxylate O atoms from two different 4‐IBA ligands, two O atoms from two water molecules and one N atom from a bpe ligand. The CdII centres are bridged by the aqua molecules and bpe ligands, which lie across centres of inversion, to give a two‐dimensional net. Topologically, taking the CdII atoms as nodes and the μ‐aqua and μ‐bpe ligands as linkers, the two‐dimensional structure can be simplified as a (6,3) network.  相似文献   

20.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号