首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

2.
The 1:1 proton‐transfer compound of the potent substituted amphetamine hallucinogen (R)‐2‐amino‐1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propane (common trivial name `bromodragonfly') with 3,5‐dinitrosalicylic acid, namely 1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propan‐2‐aminium 2‐carboxy‐4,6‐dinitrophenolate, C13H13BrNO2+·C7H3N2O7, forms hydrogen‐bonded cation–anion chain substructures comprising undulating head‐to‐tail anion chains formed through C(8) carboxyl–nitro O—H...O associations and incorporating the aminium groups of the cations. The intrachain cation–anion hydrogen‐bonding associations feature proximal cyclic R33(8) interactions involving both an N+—H...Ophenolate and the carboxyl–nitro O—H...O associations and aromatic π–π ring interactions [minimum ring centroid separation = 3.566 (2) Å]. A lateral hydrogen‐bonding interaction between the third aminium H atom and a carboxyl O‐atom acceptor links the chain substructures, giving a two‐dimensional sheet structure. This determination represents the first of any form of this compound and is in the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen‐bonded chain substructures provided by the anions, which accommodate the aminium proton‐donor groups of the cations and give crosslinking, and to the presence of the cation–anion aromatic ring π–π interactions.  相似文献   

3.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

4.
The title salt, methyl (1R,2R,3S,5S,8S)‐3‐benzoyl­oxy‐8‐methyl‐8‐aza­bicyclo­[3.2.1]octane‐2‐carboxyl­ate tetra­chloro­aurate(III), (C17H22NO4)[AuCl4], has its protonated N atom intra­molecularly hydrogen bonded to the O atom of the methoxy­carbonyl group [N⋯O = 2.755 (6) Å and N—H⋯O = 136°]. Two close inter­molecular C—H⋯O contacts exist, as well as five C—H⋯Cl close contacts. The [AuCl4] anion was found to be distorted square planar.  相似文献   

5.
Aminoalkanol and aroxyalkyl derivatives are known as potential anticonvulsants. Two new salts, namely bis{(R,S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium} succinate ( 1s ), C13H22NO2+·0.5C4H4O42−, and bis{(S)‐(+)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium} succinate ( 2s ), C13H22NO2+·0.5C4H4O42−, have been prepared and characterized by single‐crystal X‐ray diffraction. The N atoms are protonated by proton transfer from succinic acid. Salt 1s crystallizes in the space group P21/n with one cation and half an anion in the asymmetric unit across an inversion centre, while ( 2s ) crystallizes in the space group P21 with four cations and two anions in the asymmetric unit. The hydroxy group of the cation of 1s is observed in two R/S disorder positions. The crystals of these two salts display similar supramolecular architectures (i.e. two‐dimensional networks), built mainly by intermolecular N+—H…Oδ− and O—H…Oδ− hydrogen bonds, where `δ−' represents a partial charge. The succinate anions are engaged in hydrogen bonds, not only with protonated N atoms, but also with hydroxy groups.  相似文献   

6.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

7.
Colourless crystals of the title compound, bis(2‐bromo­phenyl) di­sulfide, C12H8Br2S2, are obtained from the reaction of 2‐bromo­phenyl­mercaptan with metallic sodium and either zinc chloride or cadmium chloride in methanol. In the presence of ZnII ions, the crystals are orthorhombic (space group Pbca, with Z′ = 1); with CdII ions present, the product is triclinic (space group , with Z′ = 4). Both polymorphs exhibit significant intramolecular C—H⋯S hydrogen bonds. In the ortho­rhombic form, mol­ecules are linked by intermolecular C—H⋯Br hydrogen bonds, while in the triclinic form, mol­ecules exhibit Br⋯Br contacts.  相似文献   

8.
The crystal and molecular structures of four stereoisomers of tapentadol hydrochloride [systematic name: 3‐(3‐hydroxyphenyl)‐N,N,2‐trimethylpentan‐1‐aminium chloride], C14H24NO+·Cl, a novel analgesic agent, have been determined by X‐ray crystal structure analysis. Resolution of the isomers was carried out by reverse‐phase and chiral high‐performance liquid chromatographic (HPLC) methods. Stereoisomers (I) and (II) crystallize in the monoclinic space group P21, each with two tapentadol cations and two chloride anions in the asymmetric unit, while stereoisomers (III) and (IV) crystallize in the orthorhombic space group P212121, with one tapentadol cation and one chloride anion in the asymmetric unit. The absolute configurations of the four enantiomers were determined unambiguously by X‐ray crystallography. The crystal structures reveal the stereochemistries at the 3‐ethyl and 2‐methyl groups to be R,R, S,S, S,R and R,S in stereoisomers (I)–(IV), respectively. The ethyl and aminopropyl groups adopt different orientations with respect to the phenol ring for (I) and (IV). In all four structures, the chloride ions take part in N—H...Cl and O—H...Cl hydrogen bonds with the tapentadol molecules, resulting in one‐dimensional helical chains in the crystal packing in each case.  相似文献   

9.
The title compound is a salt, 2H5O2+·C10H6O6S22−, in which the anion lies across an inversion centre in the space group C2/c, while the cation contains a short but noncentred O—H...O hydrogen bond. The ionic components are linked by charge‐assisted O—H...O hydrogen bonds into a three‐dimensional framework structure.  相似文献   

10.
In the crystal structures of the conformational isomers hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate monohydrate (pro‐E), C6H10N2O6P2·H2O, (Ia), and hydrogen {phosphono[(pyridin‐1‐ium‐3‐yl)amino]methyl}phosphonate (pro‐Z), C6H10N2O6P2, (Ib), the related hydrogen {[(2‐chloropyridin‐1‐ium‐3‐yl)amino](phosphono)methyl}phosphonate (pro‐E), C6H9ClN2O6P2, (II), and the salt bis(6‐chloropyridin‐3‐aminium) [hydrogen bis({[2‐chloropyridin‐1‐ium‐3‐yl(0.5+)]amino}methylenediphosphonate)] (pro‐Z), 2C5H6ClN2+·C12H16Cl2N4O12P42−, (III), chain–chain interactions involving phosphono (–PO3H2) and phosphonate (–PO3H) groups are dominant in determining the crystal packing. The crystals of (Ia) and (III) comprise similar ribbons, which are held together by N—H...O interactions, by water‐ or cation‐mediated contacts, and by π–π interactions between the aromatic rings of adjacent zwitterions in (Ia), and those of the cations and anions in (III). The crystals of (Ib) and (II) have a layered architecture: the former exhibits highly corrugated monolayers perpendicular to the [100] direction, while in the latter, flat bilayers parallel to the (001) plane are formed. In both (Ib) and (II), the interlayer contacts are realised through N—H...O hydrogen bonds and weak C—H...O interactions involving aromatic C atoms.  相似文献   

11.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

12.
Two inclusion compounds of dithiobiurea and tetrapropylammonium and tetrabutylammonium are characterized and reported, namely tetrapropylammonium carbamothioyl(carbamothioylamino)azanide, C12H28N+·C2H5N4S2, (1), and tetrabutylammonium carbamothioyl(carbamothioylamino)azanide, C16H36N+·C2H5N4S2, (2). The results show that in (1), the dithiobiurea anion forms a dimer via N—H...N hydrogen bonds and the dimers are connected into wide hydrogen‐bonded ribbons. The guest tetrapropylammonium cation changes its character to become the host molecule, generating pseudo‐channels containing the aforementioned ribbons by C—H...S contacts, yielding the three‐dimensional network structure. In comparison, in (2), the dithiobiurea anions are linked via N—H...S interactions, producing one‐dimensional chains which pack to generate two‐dimensional hydrogen‐bonded layers. These layers accommodate the guest tetrabutylammonium cations, resulting in a sandwich‐like layer structure with host–guest C—H...S contacts.  相似文献   

13.
Triphenyl(2,4,5‐trimethoxybenzyl)phosphonium chloride is formed in solvent‐free form by the reaction under anhydrous conditions between triphenylphosphane and 2,4,5‐trimethoxybenzyl chloride, but when it is crystallized from a mixture of ethyl acetate and chloroform in the presence of air it forms a stoichiometric monohydrate, C28H28O3P+·Cl·H2O, (I). The reactions between the anhydrous phosphonium salt and alkoxy‐substituted benzaldehydes, using Wittig reactions in the presence of potassium tert‐butoxide, provide a series of multiply substituted stilbenes, most of which were assigned the Z configuration on the basis of their NMR spectra. However, no such deduction could be made for the symmetrically substituted (Z)‐2,2′,4,4′,5,5′‐hexamethoxystilbene, C20H24O6, (II). Compound (II) does in fact have the Z configuration and the molecular geometry provides evidence for steric congestion around the central double bond; in particular, the central alkene fragment is nonplanar, with a C—C=C—C torsion angle of 7.8 (4)°. In hydrated salt (I), the chloride anions and water molecules are linked by O—H...Cl hydrogen bonds to form C21(4) chains; each cation is linked by C—H...O hydrogen bonds to two different chains, so forming a sheet structure. There are no direction‐specific intermolecular interactions in the structure of (II).  相似文献   

14.
The interaction of the antimigraine pharmaceutical agent frovatriptan with acetic acid and succinic acid yields the salts (±)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium acetate, C14H18N3O+·C2H3O2, (I), (R)‐(+)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium 3‐carboxypropanoate monohydrate, C14H18N3O+·C4H5O4·H2O, (II), and bis[(R)‐(+)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium] succinate trihydrate, 2C14H18N3O+·C4H4O42−·3H2O, (III). The methylazaniumyl substitutent is oriented differently in all three structures. Additionally, the amide group in (I) is in a different orientation. All the salts form three‐dimensional hydrogen‐bonded structures. In (I), the cations form head‐to‐head hydrogen‐bonded amide–amide catemers through N—H...O interactions, while in (II) and (III) the cations form head‐to‐head amide–amide dimers. The cation catemers in (I) are extended into a three‐dimensional network through further interactions with acetate anion acceptors. The presence of succinate anions and water molecules in (II) and (III) primarily governs the three‐dimensional network through water‐bridged cation–anion associations via O—H...O and N—H...O hydrogen bonds. The structures reported here shed some light on the possible mode of noncovalent interactions in the aggregation and interaction patterns of drug molecule adducts.  相似文献   

15.
Polysulfonylamines. CLXVI. Crystal Structures of Metal Di(methanesulfonyl)amides. 15. The Isotypic Crystal Structures of Ammonium and Cesium Dimesylamide: Crystallographic Congruency of Hydrogen Bonds N—H···O/N and Metal‐Ligand Interactions Cs—O/N The ammonium salt NH4[N(SO2CH3)2] and its previously reported cesium analogue Cs[N(SO2CH3)2] are isostructural (monoclinic, space group P21/n, Z = 4, V at —140 °C: 0.761 and 0.832 nm3 respectively). The cesium ion adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding anions, whereas in the ammonium‐based structure each of the seven Cs—O/N interactions is perfectly mimicked by an N—H···O/N hydrogen‐bond component. To this effect, three N—H donors are engaged in asymmetric three‐centre bonds, the fourth in a moderately strong and approximately linear two‐centre bond. The crystal packings consist of anion monolayers that intercalate planar zigzag rows of cations propagating around symmetry centres (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°; N···N alternatingly 397.4 and 474.1 pm, N···N···N 136.1°). Each cation row is surrounded by and bonded to four translation‐generated anion stacks, and each anion stack connects two cation rows. The net effect is that the packings display congruent three‐dimensional networks of metal‐ligand bonds or hydrogen bonds, respectively. Moreover, close C—H···O/N interanion contacts consistent with weak hydrogen bonding are observed in both structures.  相似文献   

16.
The crystal structure of the free base of the antidiabetic drug alogliptin [systematic name: 2‐({6‐[(3R)‐3‐aminopiperidin‐1‐yl]‐3‐methyl‐2,4‐dioxo‐1,2,3,4‐tetrahydropyrimidin‐1‐yl}methyl)benzonitrile], C18H21N5O2, displays a two‐dimensional N—H...O hydrogen‐bonded network. It contains two independent molecules, which have the same conformation but differ in their hydrogen‐bond connectivity. In the crystal structure of the benzoate salt (systematic name: (3R)‐1‐{3‐[(2‐cyanophenyl)methyl]‐1‐methyl‐2,6‐dioxo‐1,2,3,6‐tetrahydropyrimidin‐4‐yl}piperidin‐3‐aminium benzoate), C18H22N5O2+·C7H5O2, the NH3+ group of the cation is engaged in three intermolecular N—H...O hydrogen bonds to yield a hydrogen‐bonded layer structure. The benzoate salt and the free base differ fundamentally in the conformations of their alogliptin moieties.  相似文献   

17.
Four crystal structures of 2‐amino‐N‐(dimethylphenoxyethyl)propan‐1‐ol derivatives, characterized by X‐ray diffraction analysis, are reported. The free base (R,S)‐2‐amino‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]propan‐1‐ol, C13H21NO2, 1 , crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium chloride, C13H22NO2+·Cl?, 2c , crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2‐picolinic acid, namely, (R,S)‐N‐[2‐(2,3‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 1p , and (R)‐N‐[2‐(2,6‐dimethylphenoxy)ethyl]‐1‐hydroxypropan‐2‐aminium pyridine‐2‐carboxylate, C13H22NO2+·C6H4NO2?, 2p , consists of one cation and one 2‐picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen‐bonded chains, while the structures of the 2‐picolinate salts have hydrogen‐bonded rings as the major features. In both salts with 2‐picolinic acid, the specific R12(5) hydrogen‐bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.  相似文献   

18.
In the title compound, (5‐oxo‐3a,6a‐diphenyl­perhydro­imidazo[4,5‐d]imidazol‐2‐ylidene)oxonium hydrogen sulfate, C16H15N4O2+·HSO4, the asymmetric unit contains a hydrogen sulfate anion and a 3a,6a‐diphenyl­glycoluril oxonium cation. The hydrogen sulfate anion is joined to the oxonium cation via a strong O—H⋯O hydrogen bond (H⋯O = 1.69 Å). The crystal packing is mainly dominated by inter­actions involving the hydrogen sulfate anion. The diphenyl­glycoluril oxonium cations also self‐assemble through N—H⋯O hydrogen bonds, forming mol­ecular chains along the [001] vector. Four intra­molecular C—H⋯N hydrogen bonds are observed, having an S(5) motif.  相似文献   

19.
L‐Cysteine hydrogen fluoride, or bis(L‐cysteinium) difluoride–L‐cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F·C3H7NO2S·HF or L‐Cys+(L‐Cys...L‐Cys+)F(F...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e.A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter‐ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L‐Cys...L‐Cys+) cation and the dimeric (F...H—F) anion are formed via strong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L‐cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single‐crystal X‐ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above‐mentioned hydrogen bonds.  相似文献   

20.
The title compound, (C6H9N2S)[ZnCl3{SC(NH2)2}], exists as a zincate where the zinc(II) centre is coordinated by three chloride ligands and a thiourea ligand to form the anion. The organic cation adopts the protonated 4,6‐dimethyl‐2‐sulfanylidenepyrimidin‐1‐ium (L) form of 4,6‐dimethylpyrimidine‐2(1H)‐thione. Two short N—H...Cl hydrogen bonds involving the pyrimidine H atoms and the [ZnCl3L] anion form a crystallographically centrosymmetric dimeric unit consisting of two anions and two cations. The packing structure is completed by longer‐range hydrogen bonds donated by the thiourea NH2 groups to chloride ligand hydrogen‐bond acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号