首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ??-conjugated ladder-type molecules constitute an attractive field of organic photoactive materials. In this work, the photophysical properties of ladder-type penta-p-phenylene (LPP) and carbazole derivatives (bisindenocarbazole and diindolocarbazole) have been investigated theoretically using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. The equilibrium geometries in the ground (S 0) and first excited (S 1) states were calculated to be planar, and the excitation is delocalized over the molecules. SAC-CI/DZP calculations have been applied to the absorption and emission spectra of these molecules. The absorption spectra were well reproduced in both peak positions and the shape of the absorption bands. The strong absorption is attributed to the highest occupied molecular orbital to the lowest unoccupied molecular orbital (H?CL) transition; however, in carbazoles, the H?C1??L transition is located below the H?CL transition. The vibrational structure in the S 0?CS 1 absorption band of LPP was analyzed by calculating the Franck?CCondon (FC) factors based on the potential energy surfaces (PESs) along the normal coordinates that are relevant to the geometry change. The vibrational structure was well reproduced by the theoretical simulation. The C?CC stretching mode dominantly contributes to the vibrational structure, while the breathing motion of the molecular frame does not influence the structure. The emission energies calculated by the SAC-CI method also agree well with the experimental values. The vibrational structure in the fluorescence band was also examined by the FC analysis; the theoretical spectrum is satisfactory for the two carbazoles, while the 0?C0 transition is overestimated in LPP. In diindolocarbazole, the S 2 state has a large oscillator strength, while the S 1 state has a small oscillator strength.  相似文献   

2.
We proposed a new molecular design strategy that the o-carboranyl group is attached as “an innocent unit” to the remote side of luminogens to tune photophysical properties. To verify this strategy, two o-carborane-based compounds with asymmetric molecular geometry were designed and synthesized. Photophysical properties of o-carborane-based luminogens were investigated on the basis of UV-Vis spectra, photoluminescence spectra, crystal structure analysis and theoretical calculations. The results indicate that the o-carboranyl group has a slight effect on the energy gap between the ground state (S0) and the first excited state (S1) in the solution state but a significant effect on the energy gap between S0 and S1 in the solid state. Besides, the radiative and non-radiative transition processes are modulated by the o-carboranyl unit. This leads to emission quenching in the solution state but an enhanced luminous efficiency in the aggregate state with a typical aggregation-induced emission (AIE) property.  相似文献   

3.
《中国化学》2017,35(10):1559-1568
The donor‐π‐conjugated‐acceptor (D‐π‐A) structure is an important design for the luminescent materials because of its diversity in the selections of donor, π‐bridge and acceptor groups. Herein, we demonstrate two examples of D‐π‐A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA‐AN‐BP and CZP‐AN‐BP , which possess the same acceptor and π‐bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D‐π‐A structure with proper donor, π‐bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the π‐bridge, resulting in a hybridized local and charge‐transfer (HLCT ) excited state with high photoluminescent (PL ) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moieties with large energy gap between T2 and T1 , and a small energy gap between S1 and T2 , which favor the reverse intersystem crossing (RISC ) from high‐lying triplet levels to singlet levels. As a result, the sky‐blue emission non‐doped OLED based on the TPA‐AN‐BP reached maximum external quantum efficiency (EQE ) of 4.39% and a high exciton utilization efficiency (EUE ) of 77%. This study demonstrates a new strategy to construct highly efficient OLED materials.  相似文献   

4.
The photophysical properties such as electronic absorption, excitation and emission spectra as well as molar absorptivity and fluorescence quantum yield of N,N‐bis(pyrimidenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PmPBD), N,N‐bis(pyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (PyPBD) and N,N‐bis(4‐methylpyridenyl)‐3,4,9,10‐perylenetetracarboxylic diimide (MPyPBD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield ((f) is solvent dependent. Perylene derivatives under investigation undergo molecular aggregation to dimmer or larger aggregates in water. Dye solution in dimethylformmaide (DMF) gives laser emission at 565 nm upon pumping with 337.1 nm nitrogen laser pulse. The excitation energy transfer from 7‐dimethylamino‐4‐methylcoumarine (DMC) to PmPBD has been studied to improve the laser emission of PmPBD. The value of energy transfer rate constant (kET) and critical transfer distance (R0) indicate a F?rster type energy transfer mechanism. There is a large interaction between the perylene compounds under investigation and the hydrated nanoparticles in the excited state therefore the fluorescence quenching rate constant of these derivatives by hydrated iron oxide nanoparticles has a large value.  相似文献   

5.
Herein, we report the synthesis of polyfunctional BODIPY building blocks suitable to be subjected to several reaction sequences with complete chemoselectivity, thereby allowing the preparation of complex BODIPY derivatives in a versatile and programmable manner. The reactions included the Liebeskind–Srogl cross‐coupling reaction (LSCC), nucleophilic aromatic substitution (SNAr), Suzuki, Sonogashira, and Stille couplings, and a desulfitative reduction of the MeS group. This novel synthetic protocol is a powerful route to design a library of compounds with tailored photophysical properties for advanced applications. In this context, it is noteworthy that it offers a straightforward and cost‐effective strategy to shift the BODIPY emission deep into the near‐infrared spectral region while retaining high fluorescence quantum yields as well as highly efficient and stable laser action. These new dyes outperform the lasing behaviour of dyes considered as benchmarks over the red spectral region, overcoming the important drawbacks associated with these commercial laser dyes, namely low absorption at the standard pump wavelengths (355 and 532 nm) and/or poor photostability.  相似文献   

6.
The synthesis and photophysical properties of several porphyrin (P)–phthalocyanine (Pc) conjugates (P–Pc; 1 – 3 ) are described, in which the phthalocyanines are directly linked to the β‐pyrrolic position of a meso‐tetraphenylporphyrin. Photoinduced energy‐ and electron‐transfer processes were studied through the preparation of H2P–ZnPc, ZnP–ZnPc, and PdP–ZnPc conjugates, and their assembly through metal coordination with two different pyridylfulleropyrrolidines ( 4 and 5 ). The resulting electron‐donor–acceptor hybrids, which were formed by axial coordination of compounds 4 and 5 with the corresponding phthalocyanines, mimicked the fundamental processes of photosynthesis; that is, light harvesting, the transduction of excited‐state energy, and unidirectional electron transfer. In particular, photophysical studies confirmed that intramolecular energy‐transfer resulted from the S2 excited state as well as from the S1 excited state of the porphyrins to the energetically lower‐lying phthalocyanines, followed by an intramolecular charge‐transfer to yield P–Pc.+ ? C60.?. This unique sequence of processes opens the way for solar‐energy‐conversion processes.  相似文献   

7.
This paper describes the results of a study of the photophysical properties of various methyl-angelicins (MA) in solvents of different polarity and proticity. The behavior of their excited singlet and triplet states was investigated by fluorometry and nanosecond laser flash photolysis. On the basis of semiempirical (ZINDO/S-CI) calculations and the solvent effect on the absorption and fluorescence properties, the lowest excited singlet state (S1) is assigned to a partially allowed π, π* state. The close lying S2 state is n,π* in nature. The efficiency of the decay pathways of S1 (fluorescence, intersystem crossing and internal conversion) strongly depends on the energy gap between the S1 and S2 states consistent with the manifestation of “proximity effect.” Thus, MA in cyclohexane decay only through S1→ S0 internal conversion, while in acetonitrile and ethanol, where the n, π* state is located at higher energy, their fluorescence and intersystem crossing increase significantly. The lowest excited triplet states (T1) were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yields. The interaction of T1 MA with molecular oxygen leads to an efficient formation of singlet oxygen, as evidenced by the appearance of characteristic IR phosphorescence centered at 1269 nm.  相似文献   

8.
Reactions of [Rh(κ2O,O‐acac)(PMe3)2] (acac=acetylacetonato) and α,ω‐bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5‐bis(arylethynyl)rhodacyclopentadienes ( A ) are formed, which display intense fluorescence (Φ=0.07–0.54, τ=0.2–2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes ( B ), which show exceptionally long‐lived (hundreds of μs) phosphorescence (Φ=0.01–0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β‐H‐shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B , allowing for more efficient intersystem crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of the bis‐ (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.  相似文献   

9.
《Chemical physics》2003,286(2-3):227-236
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas–Reiche–Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH4 is also presented which is used to obtain reliable results for the isotropic dipole–dipole dispersion energy coefficients C6, for the interaction of silane with itself and with forty-four other species, and the triple–dipole dispersion energy coefficient C9 for (SiH4)3.  相似文献   

10.
Understanding the effects of substituents on spectral properties is essential for the rational design of tailored bacteriochlorins for light‐harvesting and other applications. Toward this goal, three new bacteriochlorins containing previously unexplored conjugating substituents have been prepared and characterized. The conjugating substituents include two positively charged species, 2‐(N‐ethyl 2‐quinolinium)vinyl‐ (B‐1) and 2‐(N‐ethyl 4‐pyridinium)vinyl‐ (B‐2), and a neutral group, acroleinyl‐ (B‐3); the charged species resemble cyanine (or styryl) dye motifs whereas the neutral unit resembles a merocyanine dye motif. The three bacteriochlorins are examined by static and time‐resolved absorption and emission spectroscopy and density functional theoretical calculations. B‐1 and B‐2 have Qy absorption bathochromically shifted well into the NIR region (822 and 852 nm), farther than B‐3 (793 nm) and other 3,13‐disubstituted bacteriochlorins studied previously. B‐1 and B‐2 have broad Qy absorption and fluorescence features with large peak separation (Stokes shift), low fluorescence yields, and shortened S1 (Qy) excited‐state lifetimes (~700 ps and ~100 ps). More typical spectra and S1 lifetime (~2.3 ns) are found for B‐3. The combined photophysical and molecular‐orbital characteristics suggest the altered spectra and enhanced nonradiative S1 decay of B‐1 and B‐2 derive from excited‐state configurations in which electron density is shifted between the macrocycle and the substituents.  相似文献   

11.
First principles calculations based on density functional theory (DFT) have been performed to design a new set of donor‐corrole‐bridge‐acceptor type systems based on the gallium corroles for dye‐sensitized solar cell applications. The design strategy for these systems is based on the benchmark studies done on the experimentally tested aluminum, gallium, and tin metallocorroles. Unfortunately, corrole analogues display poor light to current conversion efficiencies in spite of their desirable photophysical properties. Thus, improving the efficiency of corrole analogues has become a major challenge and ways to identify solutions to this is of outstanding fundamental importance. This study shows the lack of charge directionality toward anchoring group as plausible reason for the poor efficiencies of reported corrole systems, which enabled us to fine‐tune the electronic and optical properties of new D‐π‐A type systems, COR1‐COR4. The molecular geometries, electronic structure, and binding orientation of these systems on TiO2 surface were investigated using DFT, TD‐DFT, and PBC methods. When compared with the reported corroles, COR1‐COR4 have a smaller band gaps, red‐shifted absorption spectra with higher extinction coefficients (105 M?1 cm?1) and improved nonlinear optical properties. Importantly, results revealed that these dyes bind with two‐arm mode to TiO2 surface and the density of states of the dye@TiO2 elucidate strong coupling between the dyes and TiO2 surface. We anticipate that the unique photophysical properties of these sensitizers will trigger the experimental efforts to yield a new generation of sensitizers based on corrole macrocyle. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Synthesis, photophysical and metal ion recognition properties of a series of amino acid‐linked free‐base and Zn‐porphyrin derivatives (5–9) are reported. These porphyrin derivatives showed favorable photophysical properties including high molar extinction coefficients (>1 × 105 m ?1 cm?1 for the Soret band), quantum yields of triplet excited states (63–94%) and singlet oxygen generation efficiencies (59–91%). Particularly, the Zn‐porphyrin derivatives, 6 and 9 showed higher molar extinction coefficients, decreased fluorescence quantum yields, and higher triplet and singlet oxygen quantum yields compared to the corresponding free‐base porphyrin derivatives. Further, the study of their interactions with various metal ions indicated that the proline‐conjugated Zn‐porphyrins (6 and 9) showed high selectivity toward Cu2+ ions and signaled the recognition through changes in fluorescence intensity. Our results provide insights on the role of nature of amino acid and metallation in the design of the porphyrin systems for application as probes and sensitizers.  相似文献   

13.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Seven 2,4,6‐trisubstituted pyridine derivatives with N,N‐diethylaniline substituents at the 4‐position were synthesized, and their spectroscopic properties in the absence and presence of acid were studied. The spectral effects of protonation, molar absorptivities, pKa values, and the structural origins of the observed spectral behavior were ascertained. The pyridine nitrogen was found to be more basic than the diethylamino nitrogen atom. Protonation of the pyridine ring nitrogen is associated with the appearance of a red‐shifted intramolecular charge transfer peak in the UV‐visible spectra. Favorable color indicating properties result from electron‐donating substitution at the 2 and 6 positions of pyridine, which provide a greater absorptivity of the red‐shifted peak associated with protonation of the pyridine nitrogen. These findings will assist in the design and optimization of these compounds for ion‐indicating and pH‐sensing applications.  相似文献   

15.
Two equations of linear type (Eqs. 10 and 17 in the text) have been derived to analyze the IR data to determine the dimerization constant consistently. Equation 10 is to be used to fit the integrated absorbances of the monomer band to obtain the molar monomer absorptivity, ?m, and dimerization constant, K; Eq. 17 is to be used to fit the integrated absorbances of the dimer bands to obtain the molar dimer absorptivity, ?d, and dimerization constant, K. Thus the same dimerization constant can be independently determined either from the monomer band or from the dimer band. The discrepancy between the two determined values provides an assessment of the consistency of determination. The monomer‐dimer self‐association of 2,2‐dimethyl‐3‐ethyl‐3‐pentanol in the solvent of carbon tetrachloride was chosen to demonstrate the utility of these two equations.  相似文献   

16.
《合成通讯》2013,43(24):4487-4492
Abstract

An aldol‐type reaction catalyzed by a Ti‐(S)‐BINOL complex using with a diketene as substrate is described herein. The complex derived from 1.0 molar equivalent of Ti(Oi‐Pr)4 and 2.0 molar equivalents of (S)‐BINOL gave (S)‐isopropyl 5‐hydroxy‐7‐phenyl‐3‐oxo‐6‐heptenoate with high enantioselectivity.  相似文献   

17.
We report the spectroscopic properties of fluorescein, x-rhodamine, tetramethyl-rhodamine, attached to single strand, duplex DNA, and to the digestion products by DNAse I. The properties reported include: molar absorptivity, quantum yield, absorbance and fluorescence spectra, fluorescence lifetime, intrinsic lifetime (τ0), static quenching (S) and the Förster critical distances (R0) between fluorescein and x-rhodamine or tetramethyl-rhodamine (acceptors). These spectroscopic properties depend strongly on the local dye environment. Fluorescein was studied: (1) attached to biotin (BF), (2) BF bound to avidin; and attached to two positions in DNA. X-rhodamine and tetramethyl-rhodamine were studied as free dyes and attached at the 5′-end of DNA. We propose a general method to determine the molar absorptivity and τ0 of a dye attached to DNA based on the reaction of a biotinylated and dye-labeled oligomer with standardized avidin. The molar absorptivity of a second dye attached to a DNA duplex can be obtained by comparing spectra of doubly and singly labeled sequences. S, arising from dye–DNA interactions can then be determined. R0 for free and attached dyes showed differences from 1.1 to 4.2 Å. We present evidence for the direct interaction of dyes attached to the termini of various single-stranded DNA sequences.  相似文献   

18.
The structural and electronic properties of fluorene‐phenylene copolymer (FP)n, n = 1–4 were studied by means of quantum chemical calculations based on density functional theory (DFT) and time dependent density functional theory (TD‐DFT) using B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest singlet excited state. It was found that (FP)n is nonplanar in its ground state while the electronic excitations lead to planarity in its S1 state. Absorption and fluorescence energies were calculated using TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods. Vertical excitation energies and fluorescence energies were obtained by extrapolating these values to infinite chain length, resulting in extrapolated values for vertical excitation energy of 2.89 and 2.87 eV, respectively. The S1 ← S0 electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is distinguishing in terms of oscillator strength. Fluorescence energies of (FP)n calculated from TD‐B3LYP/SVP and TD‐B3LYP/SVP+ methods are 2.27 and 2.26 eV, respectively. Radiative lifetimes are predicted to be 0.55 and 0.51 ns for TD‐B3LYP/SVP and TD‐B3LYP/SVP+ calculations, respectively. These fundamental information are valuable data in designing and making of promising materials for LED materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   

20.
A series of blue light‐emitting hyperbranched polymers comprising poly(fluorene‐co‐dibenzothiophene‐S,S‐dioxide) as the branch and benzene, triphenylamine, or triphenyltriazine as the core were synthesized by an “A2 + A2' + B3” approach of Suzuki polymerization, respectively. All resulted copolymers exhibited quite comparable thermal properties with the glass transition temperatures in the range of 59–68 °C and relatively high decomposition temperatures over 420 °C. Photoluminescent spectra exhibited slight variation with the molar ratio of the dibenzothiophene‐S,S‐dioxide unit and the size of the core units. Polymer light‐emitting devices demonstrated blue emission with excellent stability of electroluminescence. Copolymers based on smaller core units of benzene and triphenylamine exhibited enhanced device performances regarding to that of triphenyltriazine. With the device configuration of ITO/PEDOT:PSS/polymer/CsF/Al, a maximum luminous efficiency of 4.5 cd A?1 was obtained with Commission Internationale de L'.Eclairage (CIE) coordinates of (0.16, 0.19) for the copolymer PFSO15B. These results indicated that hyperbranched structure can be a promising strategy to attain spectrally stable blue‐light‐emitting polymers with high efficiency. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1043–1051  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号