首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The asymmetric unit of the optically resolved title salt, C8H12N+·C4H5O4S, contains a 1‐phenylethanaminium monocation and a thiomalate (3‐carboxy‐2‐sulfanylpropanoate) monoanion. The absolute configurations of the cation and the anion are determined to be S and R, respectively. In the crystal, cation–anion N—H...O hydrogen bonds, together with anion–anion O—H...O and S—H...O hydrogen bonds, construct a two‐dimensional supramolecular sheet parallel to the ab plane. The two‐dimensional sheet is linked with the upper and lower sheets through C—H...π interactions to stack along the c axis.  相似文献   

2.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

3.
In the title compound, C18H15N4O+·Cl·1.5H2O, one water site is fully ordered with unit occupancy while the other, which lies close to an inversion centre in the space group C2/c, has only 0.5 occupancy. The cation exhibits bond fixation in the fused carbocyclic ring and electronic polarization in the terminal heterocyclic ring. The components are linked into complex sheets by a combination of N—H...O, N—H...Cl, O—H...O, O—H...Cl and C—H...O hydrogen bonds.  相似文献   

4.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

5.
The title salt, C3H8NO2+·C2HO4, formed between l ‐cysteine and oxalic acid, was studied as part of a comparison of the structures and properties of pure amino acids and their cocrystals. The structure of the title salt is very different from that formed by oxalic acid and equivalent amounts of d ‐ and l ‐cysteine molecules. The asymmetric unit contains an l ‐cysteinium cation and a semioxalate anion. The oxalate anion is only singly deprotonated, in contrast with the double deprotonation in the crystal structure of bis(dl ‐cysteinium) oxalate. The oxalate anion is not planar. The conformation of the l ‐cysteinium cation differs from that of the neutral cysteine zwitterion in the monoclinic and orthorhombic polymorphs of l ‐cysteine, but is similar to that of the cysteinium cation in bis(dl ‐cysteinium) oxalate. The structure of the title salt can be described as a three‐dimensional framework formed by ions linked by strong O—H...O and N—H...O and weak S—H...O hydrogen bonds, with channels running along the crystallographic a axis containing the bulky –CH2SH side chains of the cysteinium cations. The cations are only linked through hydrogen bonds via semioxalate anions. There are no direct cation–cation interactions via N—H...O hydrogen bonds between the ammonium and carboxylate groups, or via weaker S—H...S or S—H...O hydrogen bonds.  相似文献   

6.
The molecular structure of the title salt, C11H17N4+·H2PO4, has been determined from single‐crystal X‐ray analysis and compared with the structure calculated by density functional theory (DFT) at the BLYP level. The crystal packing in the title compound is stabilized primarily by intermolecular N—H...O, O—H...N and O—H...O hydrogen bonds and π–π stacking interactions, and thus a three‐dimensional supramolecular honeycomb network consisting of R42(10), R44(14) and R44(24) ring motifs is established. The HOMO–LUMO energy gap (1.338 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital) indicates a high chemical reactivity for the title compound.  相似文献   

7.
Aminopyrimidine derivatives are biologically important as they are components of nucleic acids and drugs. The crystals of two new salts, namely cytosinium 6‐chloronicotinate monohydrate, C4H6N3O+·C6H3ClNO2·H2O, ( I ), and 5‐bromo‐6‐methylisocytosinium hydrogen sulfate (or 2‐amino‐5‐bromo‐4‐oxo‐6‐methylpyrimidinium hydrogen sulfate), C5H7BrN3O+·HSO4, ( II ), have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine ring of both compounds is protonated at the imine N atom. In hydrated salt ( I ), the primary R22(8) ring motif (supramolecular heterosynthon) is formed via a pair of N—H…O(carboxylate) hydrogen bonds. The cations, anions and water molecule are hydrogen bonded through N—H…O, N—H…N, O—H…O and C—H…O hydrogen bonds, forming R22(8), R32(7) and R55(21) motifs, leading to a hydrogen‐bonded supramolecular sheet structure. The supramolecular double sheet structure is formed via water–carboxylate O—H…O hydrogen bonds and π–π interactions between the anions and the cations. In salt ( II ), the hydrogen sulfate ions are linked via O—H…O hydrogen bonds to generate zigzag chains. The aminopyrimidinium cations are embedded between these zigzag chains. Each hydrogen sulfate ion bridges two cations via pairs of N—H…O hydrogen bonds and vice versa, generating two R22(8) ring motifs (supramolecular heterosynthon). The cations also interact with one another via halogen–halogen (Br…Br) and halogen–oxygen (Br…O) interactions.  相似文献   

8.
The mixed organic–inorganic title salt, C7H18N2O2+·C2HO4·Cl, forms an assembly of ionic components which are stabilized through a series of hydrogen bonds and charge‐assisted intermolecular interactions. The title assembly crystallizes in the monoclinic C2/c space group with Z = 8. The asymmetric unit consists of a 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dication, a hydrogen oxalate counter‐anion and an inorganic chloride counter‐anion. The organic cations and anions are connected through a network of N—H...O, O—H...O and C—H...O hydrogen bonds, forming several intermolecular rings that can be described by the graph‐set notations R33(13), R21(5), R12(5), R21(6), R23(6), R22(8) and R33(9). The 4‐(3‐azaniumylpropyl)morpholin‐4‐ium dications are interconnected through N—H...O hydrogen bonds, forming C(9) chains that run diagonally along the ab face. Furthermore, the hydrogen oxalate anions are interconnected via O—H...O hydrogen bonds, forming head‐to‐tail C(5) chains along the crystallographic b axis. The two types of chains are linked through additional N—H...O and O—H...O hydrogen bonds, and the hydrogen oxalate chains are sandwiched by the 4‐(3‐azaniumylpropyl)morpholin‐4‐ium chains, forming organic layers that are separated by the chloride anions. Finally, the layered three‐dimensional structure is stabilized via intermolecular N—H...Cl and C—H...Cl interactions.  相似文献   

9.
The title compound, meso‐5,7,7,12,14,14‐hexa­methyl‐4,11‐di­aza‐1,8‐diazo­nia­cyclo­tetra­decane bis(3‐carboxy‐5‐nitro­benz­oate), C16H38N42+·2C8H4NO6?, is a salt in which the cation is present as two configurational isomers, disordered across a common centre of inversion in P, with occupancies of 0.847 (3) and 0.153 (3). The anions are linked into chains by a single O—H?O hydrogen bond [H?O 1.71 Å, O?O 2.5063 (15) Å and O—H?O 156°] and the cations link these anion chains into sheets by means of a range of N—H?O hydrogen bonds [H?O 1.81–2.53 Å, N?O 2.718 (5)–3.3554 (19) Å and N—H?O 146–171°].  相似文献   

10.
The crystal structure of N‐[(1‐{2‐oxo‐2‐[2‐(pyrazin‐2‐ylcarbonyl)hydrazin‐1‐yl]ethyl}cyclohexyl)methyl]pyrazine‐2‐carboxamide monohydrate (Pyr‐Gpn‐NN‐NH‐Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans–gauche (tg) conformation for the gabapentin (Gpn) residue around the Cγ—Cβ1) and Cβ—Cα2) bonds. The molecular conformation is stabilized by intramolecular N—H...N hydrogen bonds and weak C—H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N—H...O and O—H...O hydrogen bonds together with weak C—H...O and π–π inteactions.  相似文献   

11.
The title compound is a methanol‐solvated salt, C16H38N42+·C4H4O52−·2CH3OH, in which the ionic components are linked into chains by two pairs of N—H⃛O hydrogen bonds [H⃛O = 1.78–2.21 Å, N⃛O = 2.702 (14)–3.094 (8) Å and N—H⃛O = 160–179°]. The methanol mol­ecules are pendent from the chain and are linked to it by O—H⃛O hydrogen bonds [H⃛O = 1.86 and 1.89 Å, O⃛O = 2.691 (9) and 2.708 (16) Å, and O—H⃛O = 168 and 165°].  相似文献   

12.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

13.
The asymmetric unit of the title salt formed between 2,3,5,6‐tetrafluoroterephthalic acid (H2tfbdc) and imidazolium (ImH), C3H5N2+·C8HF4O4, contains one Htfbdc anion and one ImH2+ cation, joined by a classical N—H...O hydrogen bond. The acid and base subunits are further linked by N—H...O and O—H...O hydrogen bonds into infinite two‐dimensional layers with R56(32) hydrogen‐bond motifs. The resulting (4,4) network layers interpenetrate to produce an interlocked three‐dimensional structure. The final three‐dimensional supramolecular architecture is further stabilized by the linkages of two C—H...O interactions.  相似文献   

14.
In the title compound, C21H18ClN3O5S·C2H4O2, a combination of O—H...O, N—H...O, C—H...O and C—H...N hydrogen bonds links the components into a complex network containing alternating R44(42), R55(33) and R66(40) rings.  相似文献   

15.
Five distinct strong hydrogen‐bonding interactions of four kinds (N—H...Cl, N—H...O, O—H...N, and O—H...Cl) connect molecules of the title compound, C9H18N3+·Cl·H2O, in the crystal structure into corrugated sheets stacked along the a axis. The intermolecular interactions are efficiently described in terms of the first‐ through fifth‐level graph sets. A two‐dimensional constructor graph helps visualize the supramolecular assembly.  相似文献   

16.
The title compound, cis‐diacetonitrile[(1R,2R)‐1,2‐diaminocyclohexane‐κ2N,N′]platinum(II) dinitrate monohydrate, [Pt(C2H3N)2(C6H14N2)](NO3)2·H2O, is a molecular salt of the diaminocyclohexane–Pt complex cation. There are two formula units in the asymmetric unit. Apart from the two charge‐balancing nitrate anions, one neutral molecule of water is present. The components interact via N—H...O and O—H...O hydrogen bonds, resulting in supramolecular chains. The title compound crystallizes only from acetonitrile with residual water, with the acetonitrile coordinating to the molecule of cis‐[Pt(NO3)2(DACH)] (DACH is 1,2‐diaminocyclohexane) and the water forming a monohydrate.  相似文献   

17.
The title compound is a hydrated salt, 1,4‐diazo­nia­bi­cyclo­[2.2.2]­octane–N‐[(hydroxy­phosphinato)­methyl]­iminiodi­acetate–water (1/1/1.5), C6H14N22+·C5H8NO7P2?·1.5H2O, in which one of the water mol­ecules lies across a twofold rotation axis in space group P2/n. The ionic components are linked into sheets by a combination of a three‐centre N—H?(O)2 hydrogen bond and two‐centre O—H?O and N—H?O hydrogen bonds, and these sheets are pairwise linked by the water mol­ecules into bilayers, by means of further O—H?O hydrogen bonds.  相似文献   

18.
The crystal structures of two solid phases of the title compound, C4H5N2+·C6HCl2O4·H2O, have been determined at 225 and 120 K. In the high‐temperature phase, stable above 198 K, the transition temperature of which has been determined by 35Cl nuclear quadrupole resonance and differential thermal analysis measurements, the three components are held together by O—H...O, N...H...O, C—H...O and C—H...Cl hydrogen bonds, forming a centrosymmetric 2+2+2 aggregate. In the N...H...O hydrogen bond formed between the pyrimidin‐1‐ium cation and the water molecule, the H atom is disordered over two positions, resulting in two states, viz. pyrimidin‐1‐ium–water and pyrimidine–oxonium. In the low‐temperature phase, the title compound crystallizes in the same monoclinic space group and has a similar molecular packing, but the 2+2+2 aggregate loses the centrosymmetry, resulting in a doubling of the unit cell and two crystallographically independent molecules for each component in the asymmetric unit. The H atom in one N...H...O hydrogen bond between the pyrimidin‐1‐ium cation and the water molecule is disordered, while the H atom in the other hydrogen bond is found to be ordered at the N‐atom site with a long N—H distance [1.10 (3) Å].  相似文献   

19.
A first preliminary report on the crystal structure of a hydrated salt formulated as [Ge(taci)2]Cl4·13H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol) appeared more than 20 years ago [Ghisletta (1994). PhD thesis, ETH Zürich. Switzerland]. At that time it was not possible to discriminate unambiguously between the positions of some of the chloride ions and water O atoms, and disorder was thus postulated. In a new determination, a conclusive scheme of hydrogen bonding proves to be a particularly appealing aspect of the structure. Single crystals of the title compound, C12H30GeN6O64+·4Cl·6H2O or [Ge(taci)2]2Cl8·12H2O, were grown from an aqueous solution by slow evaporation of the solvent. The two [Ge(taci)2]4+ cations exhibit a double‐adamantane‐type structure with exclusive O‐atom coordination and approximate D3d symmetry. The taci ligands adopt a zwitterionic form with deprotonated hydroxy groups and protonated amino groups. Both cations are hydrogen bonded to six water molecules. The structure of the hydration shell of the two cations is, however, slightly different. The {[Ge(taci)2]·6H2O}4+ aggregates are interlinked in all three dimensions by further hydrogen bonds of the types N—H...Cl...H—N, N—H...O(H)2...H—N, (Ge)O...H—O(H)...H—N, N—H...O(H)—H...Cl...H—N, (Ge)O...H—O—H...Cl...H—N, N—H...O(H)—H...Cl...H—(H)O...H—N, (Ge)O...H—O—H...Cl...H—(H)O...H—N and Ge(O)...H—O—H...Cl...H—O—H...O(Ge).  相似文献   

20.
The structure of the title compound [systematic name: bis(adamantan‐1‐aminium) tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane–water (1/1/1)], (C10H18N)2[ZnCl4]·C12H24O6·H2O, consists of supramolecular rotator–stator assemblies and ribbons of hydrogen bonds parallel to [010]. The assemblies are composed of one protonated adamantan‐1‐aminium cation and one crown ether molecule (1,4,7,10,13,16‐hexaoxacyclooctadecane) to give an overall [(C10H18N)(18‐crown‐6)]+ cation. The –NH3+ group of the cation nests in the crown and links to the crown‐ether O atoms through N—H...O hydrogen bonds. The 18‐crown‐6 ring adopts a pseudo‐C3v conformation. The second adamantan‐1‐aminium forms part of ribbons of adamantan‐1‐aminium–water–tetrachloridozincate units which are interconnected by O—H...Cl, N—H...O and N—H...Cl hydrogen bonds via three different continuous rings with R54(12), R43(10) and R33(8) motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号