首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activation of C H bonds has revolutionized modern synthetic chemistry. However, no general strategy for enantiospecific C H activation has been developed to date. We herein report an enantiospecific C H activation reaction followed by deuterium incorporation at stereogenic centers. Mechanistic studies suggest that the selectivity for the α‐position of the directing heteroatom results from a four‐membered dimetallacycle as the key intermediate. This work paves the way to novel molecular chemistry on nanoparticles.  相似文献   

2.
Herein, we report the employment of the Mo Mo quintuple bonded amidinate complex to stabilize Group 10 metal fragments {(Et3P)2M} (M=Pd, Pt) and give rise to the isolation of the unprecedented δ complexes. X‐ray analysis unambiguously revealed short contacts between Pd or Pt and two Mo atoms and a slight elongation of the Mo Mo quintuple bond in these two compounds. Computational studies show donation of the Mo Mo quintuple‐bond δ electrons to an empty σ orbital on Pd or Pt, and back‐donation from a filled Pd or Pt dπ orbital into the Mo Mo δ* level (LUMO), consistent with the Dewar–Chatt–Duncanson model.  相似文献   

3.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

4.
Novel double N‐hetero[5]helicenes that are composed of two nitrogen‐substituted heteropentacenes are synthesized by tandem oxidative C N couplings via the cruciform heteropentacene dimers. The developed method is very facile and enables the synthesis of a double helicene in only two steps from commercially available naphthalene derivatives. These double N‐hetero[5]helicenes have larger torsion angles in the fjord regions than typical [5]helicenes, and optical/electrochemical measurements revealed a significant increase in the electronic communication between the two heteropentacene moieties of the double helicenes compared with their cruciform dimers. The optical resolution of one of the double helicenes was successfully carried out, and their stability towards racemization was remarkably higher than those of typical [5]helicenes. The synthetic strategy proposed in this paper should be versatile and widely applicable to the preparation of double helicenes from other N‐containing π‐conjugated planar molecules.  相似文献   

5.
An unprecedented phosphine‐catalyzed remote β‐C H functionalization of amine derivatives triggered by trifluoromethylation of an alkene with Togni’s reagent was disclosed. This reaction proceeded through the highly selective and concomitant activation of an unactivated alkene and the β‐C H bond of an amine derivative, providing bistrifluoromethylated enamides in excellent yields with good regio‐, chemo‐, and stereoselectivity. Furthermore, the newly developed one‐pot protocol provides a facile and step‐economical access to valuable trisubstituted 5‐(trifluoromethyl)oxazoles. Mechanistic studies showed that this reaction may initiate with a novel phosphine‐catalyzed radical trifluoromethylation of unactivated alkene via a phosphorus radical cation.  相似文献   

6.
7.
8.
Herein, a manganese‐catalyzed nucleophilic addition of inert C(sp2) H bonds to aldehydes and nitriles is disclosed by virtue of a dual activation strategy. The reactions feature mild reaction conditions, excellent regio‐ and stereoselectivity, and a wide substrate scope, which includes both aromatic and olefinic C H bonds, as well as a large variety of aldehydes and nitriles. Moreover, mechanistic studies shed light on possible catalytic cycles.  相似文献   

9.
10.
11.
12.
13.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


14.
The first example of a transition‐metal‐catalyzed, meta‐selective C H bromination procedure is reported. In the presence of catalytic [{Ru(p‐cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C H bond of 2‐phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one‐pot bromination/arylation and bromination/alkenylation procedures to deliver meta‐arylated and meta‐alkenylated products, respectively, in a single step.  相似文献   

15.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

16.
17.
Pd and CO—ureally got me! The title reaction proceeds efficiently at 18 °C under CO (1 atm) with 5 % [Pd(OTs)2(MeCN)2] as precatalyst. Depending on the solvents used, either anthranilates or cyclic imides can be obtained in high yields (see picture, BQ=benzoquinone, Ts=4‐toluenesulfonyl).

  相似文献   


18.
The use of coordinating moieties as directing groups for the functionalization of aromatic C? H bonds has become an established tool to enhance reactivity and induce regioselectivity. Nevertheless, with regard to the synthetic applicability of C? H activation, there is a growing interest in transformations in which the directing group can be fully abandoned, thus allowing the direct functionalization of simple benzene derivatives. However, this approach requires the disclosure of new strategies to achieve reactivity and to control selectivity. In this review, recent advances in the emerging field of non‐chelate‐assisted C? H activation are discussed, highlighting some of the most intriguing and inspiring examples of induction of reactivity and selectivity.  相似文献   

19.
The first example of a practical and direct trifluoromethylthiolation reaction of unactivated aliphatic C H bonds employs a silver‐based reagent. The reaction is operationally simple, scalable, and proceeds under aqueous conditions in air. Furthermore, its broad scope and good functional‐group compatibility were demonstrated by applying this method to the selective trifluoromethylthiolation of natural products and natural‐product derivatives.  相似文献   

20.
A fundamentally novel approach to bioactive quinolizinones is based on the palladium‐catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene‐substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium‐catalyzed C N bond activation, dearomatization, CO insertion, and a Heck reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号