首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is the first thorough method optimisation for accelerated solvent extraction (ASE) of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from chemically dried compost. For PCBs, optimised solvent composition, temperature, pressure, number of static cycles, duration, and flush volume were as follows: toluene/acetone 1?:?3 (v/v), 120°C, 2000?psi, 3?×?5?min, and 50%, respectively. Limits of quantification and method precision were between 0.16 and 2.46?µg?kg?1 dw and 6–17% respectively for individual PCBs. Absolute recoveries of isotope-labelled extraction standards used for each of the analytes ranged from 65 to 105% and relative recoveries were between 85 and 99%. The method proofed to be robust and was successfully applied to different compost samples.

The optimisation of PAHs extraction was performed and resulted in the following conditions: solvent: hexane/acetone 1/3 (v:v), temperature: 140°C, pressure: 1500?psi, extraction time: 3?×?5?min, and 50% flush volume. Limits of detection and method precision for individual PAHs were between 1.1 and 37.2?µg?kg?1?dw and 12–34% respectively. Absolute and relative recoveries ranged from 24 to 68% and from 85 to 99%, respectively. Optimal extraction conditions for PAHs were more difficult to determine due to the inhomogeneous distribution of PAHs in samples. However, the method appeared to be feasible and suggestions for further improvements are presented.  相似文献   

2.
In order to determine PAHs in marine sediment samples by GC/MS(SIM) a new extraction approach of ASE-SFE was evaluated using combined accelerated solvent extraction (ASE, dynamic and static mode) and supercritical fluid extraction (SFE, dynamic mode) without further purification of the sample. The solvents used for ASE-SFE were methylene chloride and carbon dioxide. The recovery data, precision and accuracy of the whole method were evaluated statistically. The average recoveries of PAHs, based on deuterated internal standards were 77% for 2–3-ring PAHs, 85% for 4-ring PAHs, 88% for ¶5-ring PAHs and 97% for 6-ring PAHs. The extraction time required for the ASE-SFE technique was 30 min, which is longer than in the case of independent use of ASE and shorter compared to SFE. ASE-SFE recoveries of PAHs from SRM marine sediment are comparable for (2–3-ring, 4-ring PAHs) or higher (5-ring, 6-ring PAHs) than reported for the conventional extraction methods of ASE and SFE. Method detection limits of (MDL) were statistically estimated. MDL values obtained for 15 PAHs compounds vary between 0.06 ngg?1 and 3.54 ngg?1.  相似文献   

3.
In order to determine PAHs in marine sediment samples by GC/MS(SIM) a new extraction approach of ASE-SFE was evaluated using combined accelerated solvent extraction (ASE, dynamic and static mode) and supercritical fluid extraction (SFE, dynamic mode) without further purification of the sample. The solvents used for ASE-SFE were methylene chloride and carbon dioxide. The recovery data, precision and accuracy of the whole method were evaluated statistically. The average recoveries of PAHs, based on deuterated internal standards were 77% for 2-3-ring PAHs, 85% for 4-ring PAHs, 88% for 5-ring PAHs and 97% for 6-ring PAHs. The extraction time required for the ASE-SFE technique was 30 min, which is longer than in the case of independent use of ASE and shorter compared to SFE. ASE-SFE recoveries of PAHs from SRM marine sediment are comparable for (2-3-ring, 4-ring PAHs) or higher (5-ring, 6-ring PAHs) than reported for the conventional extraction methods of ASE and SFE. Method detection limits of (MDL) were statistically estimated. MDL values obtained for 15 PAHs compounds vary between 0.06 ngg(-1) and 3.54 ngg(-1).  相似文献   

4.
《Analytical letters》2012,45(16):2465-2476
An extraction method of polycyclic aromatic hydrocarbons (PAHs) from biosolids, based on continuous pressurized solvent extraction (PSE), was developed and optimized through an experimental design and followed by gas chromatography-mass spectrometry determination. From multivariate analysis, the optimum values for extraction variables were: extraction temperature, 110°C and dynamic extraction time, 42 min, by using a mixture of dichloromethane and acetone (1:1, v/v) as the extraction solvent at a flow rate of 1 ml min?1. Under optimum extraction conditions, the detection limits for the analytes were between 0.01 and 0.14 mg kg?1 with recoveries of between 50 and 126%, which were determined by analysis of certified reference material (Sewage Sludge PAH, LGC6182). The method was applied to assess the lability of PAHs in soils amended with biosolids. It was confirmed that a fraction of these compounds undergoes strong retention in the soil, probably due to interaction with humin material. On the other hand, the amount of PAHs extracted was significantly lower after the 30-day incubation process, which is clearly exacerbated in PAHs with molecular weight lower than 228. This effect observed in the four soils under study can be attributed to degradation of these compounds by soil and biosolid microorganisms.  相似文献   

5.
A simple, rapid and efficient method termed dispersive liquid–liquid microextraction combined with liquid chromatography-fluorescence detection, has been developed for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in water and fruit juice samples. Parameters such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were optimized. Under optimum conditions, the enrichment factors ranged from 296 to 462. The linear range was 0.01–100 μg L?1 and limits of detection were 0.001–0.01 μg L?1. The relative standard deviations (RSDs, for 5 μg L?1 of PAHs) varied from 1.0 to 11.5% (n = 3). The relative recoveries of PAHs from tap, river, well and sea water samples at spiking level of 5 μg L?1 were 82.6–117.1, 74.9–113.9, 77.0–122.4 and 86.1–119.3%, respectively. The relative recoveries of PAHs from grape and apple juice samples at spiking levels of 2.5 and 5 μg L?1 were 80.8–114.7 and 88.9–123.0%, respectively. It is concluded that the proposed method can be successfully applied for determination of PAHs in water and fruit juice samples.  相似文献   

6.
We have assessed and compared the extraction recoveries of polycyclic aromatic hydrocarbons (PAHs) with molecular weights of 252, 276, 278, 300 and 302 from diesel particulate matter (PM) and urban air particles using ultrasonically assisted extraction and accelerated solvent extraction methods, and evaluated the effects of sample and treatment parameters. The results show that accelerated solvent extraction can extract PAHs more efficiently from diesel PM than ultrasonically assisted extraction. They also show that PAHs are more difficult to extract from diesel PM than from urban air particles. Using toluene and maximum instrumental settings (200 °C, 3,000 psi and five extraction cycles) with 30-min static extraction times > 85% of the analytes were estimated to be extracted from the diesel particles, but four extraction cycles with just 5-min static extraction times under these conditions seem to be sufficient to extract > 95% of the analytes from the urban air particles. The accelerated solvent extraction method was validated using the Standard Reference Materials (SRM) 1649a, Urban Dust, and SRM 2975 and SRM 1650a, Diesel Particulate Matter, from the US National Institute of Standards and Technology (NIST). PAH concentrations determined by on-line high-performance liquid chromatography–gas chromatography–mass spectrometry (HPLC-GC-MS) following the developed accelerated solvent extraction method were generally higher than the certified and reference NIST values and concentrations reported in the literature (e.g. the estimated concentration of benzo[a]pyrene in SRM 2975 was 15-fold higher than the NIST-certified value), probably because the extraction recoveries were higher than in previous studies. The developed accelerated solvent extraction method was used to analyse high molecular (HMW) weight PAHs (MW > 302) in the investigated SRMs, and more than 170 (SRM 1649a), 80 (SRM 1650b) and 60 (SRM 2975) potential high molecular weight PAHs were tentatively identified in them, with molecular weights (depending on the SRM sample analysed) of 316, 326, 328, 340, 342, 350, 352, 366, 374 and 376. This is, to our knowledge, the first study to tentatively report PAHs with molecular weights of 316, 326, 328, 342, 350, 352, 366 and 376 in diesel particulate matter. GC-MS chromatograms obtained in selected ion monitoring mode (extracted ions for the abovementioned m/z) and full-scan mass spectra of tentatively identified high molecular weight PAHs are shown in the Electronic supplementary material. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。  相似文献   

8.
沉积物是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)在环境中迁移归趋的一个重要的汇[1]。沉积物中多环芳烃的提取方法主要有索氏提取、超声波提取、微波萃取、加速溶剂提取及超临界流体萃取等。其中加速溶剂提取(accelerated solvent extraction,ASE)由于提取速度快,溶  相似文献   

9.
Accelerated solvent extraction (ASE) shows higher recoveries for PAHs in comparison with traditional Soxhlet extraction, but in a fraction of time and with less solvent consumption. Better recoveries are especially achieved with PAHs of high reactivity, the latter being expressed by the structure-to-count ratio (SCR). To estimate polar pollutants including phenols/benzenediols, the sample was subjected to a combined in-situ derivatization/extraction approach using 2% v/v acetic anhydride in toluene. The main reason for the better recovery obtained in this way, in comparison with the classical ASE approach, is to overcome strong matrix-analyte interactions. Analogously, fatty acids were analyzed as methyl esters obtained by in-situ derivatization/extraction using boron trifluoride.  相似文献   

10.
Abstract

The Accelerated solvent extraction (ASE) of PAHs (23 2- to 6-ring species) spiked onto glass fibre filters (GFFs) was studied as a function of variable extraction solvents, pressure, temperature and extraction times. Acceptable recoveries (85% ± 15%) were obtained for certain combinations of conditions and a tentative method (1500 psi, 150°C, 70:30 hexane:acetone mixture, 7 min heat-up time, 5 min static extraction time, 60% flush volume, 2 static cycles was selected for further testing. However, this method did not prove as effective as the traditional Soxhlet method of extraction when these parameters were used to extract native PAHs from ambient atmospheric particulate matter collected on a GFF by Integrated Atmospheric Deposition Network (IADN) sampling protocols. The extraction recovery study for spiked GFFs was repeated using slightly different extraction conditions: 2000 psi, 100°C, 70:30 hexane:acetone, 5 min heat-up time, 5 min static extraction time, 150% flush volume, 3 static cycles. When this method was applied to the extraction of native PAHs from ambient atmospheric particulate matter collected on GFFs, the results showed equivalent or better recoveries to that of the Soxhlet method. The total time of extraction was 25 min requiring only 30 mL of solvent. This ASE method is presently used to quantitatively determine PAHs in IADN particle-phase samples.  相似文献   

11.
A simple, cost effective, and yet sensitive sample preparation technique was investigated for determining Polycyclic Aromatic Hydrocarbons (PAHs) in solid samples. The method comprises ultrasonic extraction, Stir Bar Sorptive Extraction (SBSE), and thermal desorption–gas chromatography–mass spectrometry to increase analytical capacity in laboratories. This method required no clean-up, satisfied PAHs recovery, and significantly advances cost performance over conventional extraction methods, such as Soxhlet and Microwave Assisted Extraction (MAE). This study evaluated three operational parameters for ultrasonic extraction: solvent composition, extraction time, and sample load. A standard material, SRM 1649 a (urban dust), was used as the solid sample matrix, and 12 priority PAHs on the US Environmental Protection Agency (US EPA) list were analyzed. Combination of non-polar and polar solvents ameliorated extraction efficiency. Acetone/hexane mixtures of 2:3 and 1:1 (v/v) gave the most satisfactory results: recoveries ranged from 63.3% to 122%. Single composition solvents (methanol, hexane, and dichloromethane) showed fewer recoveries. Comparing 20 min with 60 min sonication, longer sonication diminished extraction efficiencies in general. Furthermore, sample load became a critical factor in certain solvent systems, particularly MeOH. MAE was also compared to the ultrasonic extraction, and results determined that the 20-min ultrasonic extraction using acetone/hexane (2:3, v/v) was as potent as MAE. The SBSE method using 20 mL of 30% alcohol-fortified solution rendered a limit of detection ranging from 1.7 to 32 ng L−1 and a limit of quantitation ranging from 5.8 to 110 ng L−1 for the 16 US EPA PAHs.  相似文献   

12.
《Analytical letters》2012,45(6):1085-1097
Abstract

A methodology for the determination of the pesticide chlorfenvinphos by microwave‐assisted solvent extraction and square‐wave cathodic stripping voltammetry at a mercury film ultramicroelectrode in soil samples is proposed. Optimization of microwave solvent extraction performed with two soils, selected for having significantly different properties, indicated that the optimum solvent for extracting chlorfenvinphos is hexane‐acetone (1∶1, v/v). The voltammetric procedure is based on controlled adsorptive accumulation of the insecticide at the potential of?0.60 V (vs. Ag/AgCl) in the presence of Britton‐Robinson buffer (pH 6.2). The detection limit obtained for a 10 s collection time was 3.0×10?8 mol l?1. The validity of the developed methodology was assessed by recovery experiments at the 0.100 µg g?1 level. The average recoveries and standard deviations for the global procedure reached by MASE‐square‐wave voltammetry were 90.2±2.8% and 92.1±3.4% for type I (soil rich in organic matter) and type II (sandy soil) samples, respectively. These results are in accordance to the expected values which show that the method has a good accuracy.  相似文献   

13.
 For the determination of 16 PAHs in soils and sediment samples by GC/FID and GC/MS, the dynamic off-line supercritical fluid extraction with both pure and modified carbon dioxide has been evaluated. The optimisation of extraction parameters was performed for four individual groups of PAHs according to their number of aromatic rings (2–3 rings, 4 rings, 5 rings and 6 rings) by varying pressure (200–510 bar), temperature (50–150 °C), extraction fluid volume (10–50 ml), and the methanol modifier concentration (0–10%). Using a five level spherical factorial experimental design the number of experiments required for optimisation was 45. In spiked soil samples extraction efficiencies of 80–100% were achieved for the individual groups of PAHs. At the optimal set of conditions 10–30% lower recoveries of PAHs were obtained for the standard reference material NIST SRM 1941a (marine sediment). The largest differences between extraction recoveries of native and spiked PAHs occurred at high molecular weight PAHs. Using SFE efficiency data for the standard reference material, cluster analysis proved that dividing the 16 PAHs into four groups according to their number of aromatic rings was appropriate and correct. Received: 2 February 1996/Revised: 26 November 1996/Accepted: 30 November 1996  相似文献   

14.
《Analytical letters》2012,45(11):1603-1619
Abstract

An accelerated solvent extraction (ASE) method has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) present in both atmospheric particulate and gaseous phases in this study. Extraction parameters such as the combination of solvents, extraction temperature, and static extraction time were investigated and optimized. Effective extraction was achieved using a 3:1 mixture of n-hexane and acetone as extraction solvents at 100°C in 30 min for all the compounds studied. The optimized extraction method was compared with conventional extraction methods and validated using National Institute of Standards and Technology (NIST)–certified standard reference material (SRM) 1649a. The recoveries obtained for certified 12 PAHs were in the range of 82–126% with relative standard deviation (RSD) between 6 and 28%. The validated ASE technique was used followed by gas chromatography–mass spectrometry (GC-MS) for the determination of PAHs distributed between gaseous and particulate phases in the atmosphere of Singapore. Total average concentrations of PAHs in air samples were 33.54 ± 19.32 ng m?3, with 4.72 ± 2.80 ng m?3 in particulate phase and 28.82 ± 16.92 ng m?3 in gaseous phase, respectively. The results obtained from this study are compared to those reported from other areas of the world.  相似文献   

15.
Accelerated solvent extraction (ASE) shows higher recoveries for PAHs in comparison with traditional Soxhlet extraction, but in a fraction of time and with less solvent consumption. Better recoveries are especially achieved with PAHs of high reactivity, the latter being expressed by the structure-to-count ratio (SCR). To estimate polar pollutants including phenols/benzenediols, the sample was subjected to a combined in-situ derivatization/extraction approach using 2% v/v acetic anhydride in toluene. The main reason for the better recovery obtained in this way, in comparison with the classical ASE approach, is to overcome strong matrix-analyte interactions. Analogously, fatty acids were analyzed as methyl esters obtained by in-situ derivatization/extraction using boron trifluoride. Received: 28 December 1998 / Revised: 16 February 1999 / Accepted: 21 February 1999  相似文献   

16.
Zhu B  Chen H  Li S 《色谱》2012,30(2):201-206
以密度小于水的轻质溶剂为萃取剂,建立了无需离心步骤的溶剂去乳化分散液-液微萃取-气相色谱(SD-DLLME-GC)测定水样中多环芳烃的新方法。传统分散液-液微萃取技术一般采用密度大于水的有机溶剂为萃取剂,并需要通过离心步骤促进分相。而本方法以密度比水小的轻质溶剂甲苯为萃取剂,将其与丙酮(分散剂)混合并快速注入水样,获得雾化体系;然后注入乙腈作为去乳化剂,破坏该雾化体系,无需离心,溶液立即澄清、分相;取上层有机相(甲苯)进行GC分析。考察了萃取剂、分散剂、去乳化剂的种类及其体积等因素对萃取率的影响。以40 μL甲苯为萃取剂,500 μL丙酮为分散剂,800 μL乙腈为去乳化剂,方法在20~500 μg/L范围内呈现出良好的线性(r2=0.9942~0.9999),多环芳烃的检出限(S/N=3)为0.52~5.11 μg/L。用所建立的方法平行测定5份质量浓度为40 μg/L的多环芳烃标准水样,其含量的相对标准偏差为2.2%~13.6%。本法已成功用于实际水样中多环芳烃的分析,并测得其加标回收率为80.2%~115.1%。  相似文献   

17.
超声-微波协同萃取装置用于土壤中多环芳烃的分析   总被引:14,自引:3,他引:11  
本研究将开放式微波和直接超声波振荡两种不同的能量方式相结合,研制出超声-微波协同萃取装置。通过萃取土壤中微量多环芳烃(PAHs),对方法和仪器的可行性进行了初步评价。结果表明,在60 mL二氯甲烷-正已烷(1∶1,V/V)的混合萃取剂,100 W微波辐射功率(超声振动功率固定为50 W),萃取9~10m in,土壤中多环芳烃回收率达86.6%,相对标准偏差约4.0%。与索氏抽提、高压密闭和开放式微波等萃取方法相比,本方法具有样品容量大,萃取时间短,萃取效率受样品中含水量和溶剂极性影响小等优点。  相似文献   

18.
Microwave-assisted extraction (MAE) has been evaluated as an alternative to dialysis for extraction of some water-borne hydrophobic contaminants sampled by semi-permeable membrane devices (SPMDs). Seven organochlorine pesticides (OCPs), 11 polychlorinated biphenyls (PCBs) and 13 polycyclic aromatic hydrocarbons (PAHs) were accumulated in SPMDs at nanogram levels and extracted with three 3-min irradiation cycles with 33 mL of a solvent mixture hexane–water (10:1,v/v) in each cycle. The developed MAE method gave for all analytes investigated statistically comparable extraction yields with those found by dialysis carried out with a total volume of 250 mL hexane for 48 h at room temperature. The recoveries of all the targeted contaminants were in the range of 65–105% with variation coefficients not exceeding 19%. The applicability of the MAE extraction was tested in field SPMDs samples deployed for 15 days in a sewage-treatment process. Our results show that MAE provides a remarkable reduction of time and solvent volume when used as an extraction method in the analysis of SPMDs.  相似文献   

19.
魏丹  国明  吴慧珍  张菊 《色谱》2020,38(8):945-952
建立了加速溶剂萃取(ASE)、磁固相萃取净化(MSPE)、气相色谱-质谱(GC-MS)测定土壤中多环芳烃和有机氯残留的方法。ASE萃取溶剂为丙酮-正己烷(1∶1, v/v),萃取温度为100℃,萃取压力为11.032 MPa,加热时间为5 min,静态萃取时间为5 min,循环萃取3次,冲洗体积为60%萃取池体积,氮气吹扫100 s。然后采用室温制备法自制ZIF-8/nZVI磁性材料用于净化萃取液,将净化液浓缩定容后进行GC-MS测定。多环芳烃和有机氯的线性范围为5~200μg/kg,线性相关系数(r2)均大于0.99;目标物的检出限(LOD,S/N=3)为0.04~1.21μg/kg。所建方法成功用于土壤样品中16种多环芳烃和23种有机氯的测定,在3个加标水平下得到的加标回收率为63.9%~112.1%,相对标准偏差(RSD)为0.4%~26.2%。研究结果表明,该方法具有灵敏度高、重现性好、回收率高等特点,适用于土壤中多环芳烃和有机氯残留的检测。  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants of water, and their determination at trace levels in the aquatic ecosystems is essential. In this work, an ultrasound-assisted dispersive liquid–liquid microextraction (DLLME) procedure was suggested utilizing a binary dispersive agent for recovery of different molecular weight polycyclic aromatic hydrocarbons (PAHs) from waters. The detection was carried out by gas chromatography–mass spectrometry (GC-MS) as well as high-performance liquid chromatography with fluorescence and diode-array detection (HPLC-FD/PDA). The method was optimized for the extraction of analytes with respect to the mixture composition, ratios of components, ultrasonication time and centrifugation parameters. The analytical schemes for PAHs extraction from water samples using different ratios of extraction and dispersive solvents are reported. The mixture consisting of chloroform and methanol was applied for the extraction of PAHs containing two or three fused aromatic rings; the mixture of chloroform and acetonitrile is suitable for PAHs containing more than four aromatic rings. The mixture of chloroform:acetone + acetonitrile was applied in the universal scheme and allowed for the simultaneous extraction of 20 PAHs with different structures. The developed sample preparation schemes were combined with GC-MS and HPLC-FD/PDA, which allowed us to determine the analytes at low concentrations (from 0.0002 µg/L) with the recoveries exceeding 80% and relative standard deviations of about 8%. The developed methods for the determination of 20 PAHs were applied to the analysis of water samples from the Karasun Lake (Krasnodar), Azov Sea (Temryuk) and Black Sea (Sochi).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号