首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Friedel-Crafts mono and double acylations of trans-μ-[(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η:C,6,7,C-η-(2,3,6,7-tetramethylidenebicyclo[3.2.1]octane)]bis(tricarbonyliron) ( 4 ) are highly stereoselective and yield trans-μ-{(1RS,2RS,3SR,5RS,6SR,7RS)-C,2,3,C-η :C,6,7,C-η-[(Z)-1-(3,6,7-trimethylidenebicyclo[3.2.1]-oct-2-ylidene)-2-propanone]}bis(tricarbonyliron) ( 5 ) and trans-μ-{(1RS,2RS,3SR,5RS,6SR,7SR)-C,2,3,C-η :C,6,7,C-η-[(Z,Z)-1,1′-(3,7-dimethylidenebicyclo [3.2.1] octane-2,6-diylidene)di(2-propanone)]}bis(tricarbonyliron) ( 6 ) whose structure has been established by single-crystal X-ray diffraction.  相似文献   

2.
3.
A facile one‐pot synthetic strategy has been developed for novel [alkanediylbis(3‐alkyl/aralkyl/ aryl‐3,6‐dihydropyrimidine‐1,5(2H)‐diyl)]bis(arylmethanones) 2a‐c, 2e‐m and [1,4‐phenylenebis(3‐phenyl‐3,6‐dihydropyrimidine‐1,5(2H)‐diyl)]bis(phenylmethanone) 2d by refluxing enaminones 1a‐f in methanol with diamines and formaldehyde.  相似文献   

4.
Three highly‐substituted cyclohexanol derivatives have been prepared from 2‐acetylpyridine and 4‐halogenobenzaldehydes under mild conditions. (1RS,2SR,3SR,4RS,5RS)‐3,5‐Bis(4‐fluorophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol, C35H27F2N3O3, (I), (1RS,2SR,3SR,4RS,5RS)‐3,5‐bis(4‐chlorophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol acetone 0.951‐solvate, C35H27Cl2N3O3·0.951C3H6O, (II), and (1RS,2SR,3SR,4RS,5RS)‐3,5‐bis(4‐bromophenyl)‐2,4‐bis(pyridine‐2‐carbonyl)‐1‐(pyridin‐2‐yl)cyclohexanol, C35H27Br2N3O3, (III), all crystallize in different space groups, viz. Pbca, Fdd2 and P, respectively. In compound (II), the acetone molecule is disordered over two sets of atomic sites having occupancies of 0.690 (13) and 0.261 (13). Each of the cyclohexanol molecules contains an intramolecular O—H...N hydrogen bond and their overall molecular conformations are fairly similar. The molecules of (I) are linked by two independent C—H...O hydrogen bonds to form a C(5)C(10)[R22(15)] chain of rings, and those of (III) are linked by a combination of C—H...O and C—H...N hydrogen bonds, forming a chain of alternating R22(16) and R22(18) rings. The cyclohexanol molecules in (II) are linked by a single C—H...N hydrogen bond to form simple C(4) chains and these chains are linked by a π–π stacking interaction to form sheets, to which the disordered acetone molecules are weakly linked via a number of C—H...O contacts.  相似文献   

5.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

6.
The title compounds, C21H22BrNO2, are isomeric 8‐benzyl‐2‐[(4‐bromophenyl)(hydroxy)methyl]‐8‐azabicyclo[3.2.1]octan‐3‐ones. Compound (I), the (±)‐exo,syn‐(1RS,2SR,5SR,9SR) isomer, crystallizes in the hexagonal space group R, while compounds (II) [the (+)‐exo,anti‐(1R,2S,5S,9R) isomer] and (III) [the (±)‐exo,anti‐(1RS,2SR,5SR,9RS) isomer] crystallize in the orthorhombic space groups P212121 and Pna21, respectively. The absolute configuration was determined for enantiomerically pure (II). For the noncentrosymmetric crystal of (III), its absolute structure was established. In the crystal structures of (I) and (II), an intramolecular hydrogen bond is formed between the hydroxy group and the heterocyclic N atom. In the crystal structure of racemic (III), hydrogen‐bonded chains of molecules are formed via intermolecular O—H...O interactions. Additionally, face‐to‐edge π–π interactions are present in the crystal structures of (I) and (II). In all three structures, the piperidinone rings adopt chair conformations and the N‐benzyl substituents occupy the equatorial positions.  相似文献   

7.
Synthesis and X-Ray Structure of (6′RS,8′RS,2E)- and (6′RS,8′SR,2E)-3-Methyl-3-(2′,2′,6′-trimethyl-7′-oxabicyclo[4.3.0]non-9′-en-8′-yl)-2-propenal ([(5RS,8RS)- and (5RS,8SR)-5,8-Epoxy-5,8-dihydro-ionylidene]acetaldehyde) To check our previous spectroscopic assignments of the structures of trans- and cis-substituted furanoid end groups of carotenoid-5,8-epoxides, we now have synthesized the title compounds. An X-ray structure determination of a single crystal of the trans-isomer (±)- -10A is in agreement with the 1 H-NMR spectroscopic arguments: isomers with Δδ (H? C(7), H? C(8)) = 0.15–0.22 ppm and J > 1.4 for H? C(7) belong to the cis-series; Δδ in trans-compounds is < 0.07 ppm, and H? C(7) appears as a broad singulett.  相似文献   

8.
In (2RS,4SR)‐7‐chloro‐2‐exo‐(2‐chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H12Cl2FNO, (I), molecules are linked into chains by a single C—H...π(arene) hydrogen bond. (2RS,4SR)‐2‐exo‐(2‐Chloro‐6‐fluorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13ClFNO, (II), is isomorphous with compound (I) but not strictly isostructural with it, as the hydrogen‐bonded chains in (II) are linked into sheets by an aromatic π–π stacking interaction. The molecules of (2RS,4SR)‐7‐methyl‐2‐exo‐(4‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C18H19NO, (III), are linked into sheets by a combination of C—H...N and C—H...π(arene) hydrogen bonds. (2S,4R)‐2‐exo‐(2‐Chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (IV), crystallizes as a single enantiomer and the molecules are linked into a three‐dimensional framework structure by a combination of one C—H...O hydrogen bond and three C—H...π(arene) hydrogen bonds.  相似文献   

9.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

10.
Bicycle ring closure on a mixture of (4aS,8aR)‐ and (4aR,8aS)‐ethyl 2‐oxodecahydro‐1,6‐naphthyridine‐6‐carboxylate, followed by conversion of the separated cis and trans isomers to the corresponding thioamide derivatives, gave (4aSR,8aRS)‐ethyl 2‐sulfanylidenedecahydro‐1,6‐naphthyridine‐6‐carboxylate, C11H18N2O2S. Structural analysis of this thioamide revealed a structure with two crystallographically independent conformers per asymmetric unit (Z′ = 2). The reciprocal bicycle ring closure on (3aRS,7aRS)‐ethyl 2‐oxooctahydro‐1H‐pyrrolo[3,2‐c]pyridine‐5‐carboxylate, C10H16N2O3, was also accomplished in good overall yield. Here the five‐membered ring is disordered over two positions, so that both enantiomers are represented in the asymmetric unit. The compounds act as key intermediates towards the synthesis of potential new polycyclic medicinal chemical structures.  相似文献   

11.
(2SR,4RS)‐2‐exo‐Phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H15NO, (I), (2SR,4RS)‐2‐exo‐(4‐chlorophenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14ClNO, (II), and (2SR,4RS)‐2‐exo‐(3‐methylphenyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C17H17NO, (III), all crystallize with Z′ = 2, in the space groups Cc, P21/n and P21/c, respectively. In each of (II) and (III), the conformations of the two independent molecules are significantly different. The molecules in (I) are linked by C—H...π(arene) hydrogen bonds to form two independent chains, each containing only one type of molecule. The molecules in (II) are linked into sheets by a combination of C—H...O, C—H...(N,O) and C—H...π(arene) hydrogen bonds, all of which link pairs of molecules related by inversion, while in (III), the molecules are linked into sheets by a combination of C—H...N, C—H...O and C—H...π(arene) hydrogen bonds. There are no direction‐specific intermolecular interactions of any kind in the structure of (2SR,4RS)‐7‐bromo‐2‐exo‐phenyl‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H14BrNO, (IV), but in the structure of (2SR,4RS)‐2‐exo‐(4‐bromophenyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C16H13BrClNO, (V), a combination of one C—H...N hydrogen bond and one C—H...O hydrogen bond links the molecules into sheets of alternating centrosymmetric R22(14) and R66(22) rings. Comparisons are made with the structures of a number of related compounds.  相似文献   

12.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

13.
Homochiral Diels-Alder cyclodimerization of (±)-6-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-ol ( 1 ) followed by oxidation gives (1RS,4RS,4aSR,4bSR,5RS,8RS,8aRS)-8a-ethenyl-1,3,4,4a,4b,5,6,8,8a,9-decahydro-1,4:5,8-diepoxyphenanthrene-2,7-dione ( 18 ). Selective hydrogenation followed by epoxidation produced (1RS,4RS,4aRS,5aRS,6aRS,7RS,10RS,10aSR,10bRS)-6a-ethyl-1,4,5a,6,6a,7,9,10,10a,10b-decahydro-1,4:7,10-diepoxyphenanthro[8a,9-b]oxirene-3,8-dione ( 21 ), which was solvolyzed (Me3SiOSO2CF3, Piv2O) with concomitant pinacol rearrangement involving an acyl-group migration to give a 6-oxo-7-oxabicyclo[2.2.1]hept-2-yl cation intermediate, which finally generated (1RS,3SR,3aRS,4SR,5aRS,6RS,9RS,9aSR,9bSR)-5a-ethyl-1,4,5,5a,6,7,8,9,9a,9b-decahydro-7,10-dioxo-3H-6,9-epoxy-1,3a-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 24 ). Photo-reductive 7-oxa bridge opening of 24 , followed by water elimination and silylation, provided (1RS,3SR,3aRS,4SR,5aSR,9aSR,9bSR)-7-{[(tert-butyl)dimethylsilyl]oxy}-5a-ethyl-1,4,5,5a,9a,9b-hexahydro-10-oxo-3H-1,3-ethanonaphtho[1,2-c]furan-3,4-diyl bis(2,2-dimethylpropanoate) ( 34 ). Reduction of 34 with NaBH4 in MeOH followed by desilylation and alcohol protection produced (1RS,3RS,3aRS,4SR,5aSR,9aSR,9bSR)-5a-ethyl-2,3,3a,4,5,5a,6,7,9a,9b-decahydro-1,3-bis(methoxymethoxy)-3a-[(methoxymethoxy)methyl]-7-oxo-1H-benz[e]inden-4-yl 2,2-dimethylpropanoate ( 5 ), a polyoxy-substituted decahydro-1H-benz[e]indene derivative with cis-transoid-trans junction for the two cyclohexane and the cyclopentane rings bearing an angular 3a-(oxymethyl) substituent.  相似文献   

14.
The reaction of 1‐(trimethylsilyloxy)cyclopentene ( 9 ) with (±)‐1,3,5‐triisopropyl‐2‐(1‐(RS)‐{[(1E)‐2‐methylpenta‐1,3‐dienyl]oxy}ethyl)benzene ((±)‐ 4a ) in SO2/CH2Cl2 containing (CF3SO2)2NH, followed by treatment with Bu4NF and MeI gave a 3.0 : 1 mixture of (±)‐(2RS)‐2{(1RS,2Z,4SR)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(RS)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 10 ) and (±)‐(2RS)‐2‐{(1RS,2Z)‐2‐methyl‐4‐[(SR)‐methylsulfonyl]‐1‐[(SR)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐en‐1‐yl}cyclopentanone ((±)‐ 11 ). Similarly, enantiomerically pure dienyl ether (−)‐(1S)‐ 4a reacted with 1‐(trimethylsilyloxy)cyclohexene ( 12 ) to give a 14.1 : 1 mixture of (−)‐(2S)‐2‐{(1S,2Z,4R)‐2‐methyl‐4‐(methylsulfonyl)‐1‐[(S)‐1‐(2,4,6‐triisopropylphenyl)ethoxy]pent‐2‐enyl}cyclohexanone ((−)‐ 13a ) and its diastereoisomer 14a with (1S,2R,4R) or (1R,2S,4S) configuration. Structures of (±)‐ 10 , (±)‐ 11 , and (−)‐ 13a were established by single‐crystal X‐ray crystallography. Poor diastereoselectivities were observed with the (E,E)‐2‐methylpenta‐1,3‐diene‐1‐ylethers (+)‐ 4b and (−)‐ 4c bearing ( 1 S )‐1‐phenylethyl and (1S)‐1‐(pentafluorophenyl)ethyl groups instead of the Greene's auxiliary ((1S)‐(2,4,6‐triisopropylphenyl)ethyl group). The results demonstrate that high α/βsyn and asymmetric induction (due to the chiral auxiliary) can be obtained in the four‐component syntheses of the β‐alkoxy ketones. The method generates enantiomerically pure polyfunctional methyl sulfones bearing three chiral centers on C‐atoms and one (Z)‐alkene moiety.  相似文献   

15.
Esterification of a single diastereomer of 2‐(4‐methylene­cyclohex‐2‐enyl)propanol, (II), with (1R,4S)‐(+)‐camphanic acid [(1R,4S)‐4,7,7‐trimethyl‐3‐oxo‐2‐oxabicyclo[2.2.1]heptane‐1‐carboxylic acid] leads to the crystalline title compound, C20H28O4. The relative configuration of the camphanate was determined by X‐ray diffraction analysis. The outcome clarifies the relative and absolute stereochemistry of the naturally occurring bisabolane sesquiterpenes β‐turmerone and β‐sesquiphellandrene, since we have converted (II) into both natural products via a stereospecific route.  相似文献   

16.
The Friedel-Crafts monoacylation of trans-η-[(1RS,2RS,4SR,5SR,6RS,7SR,8SR)-C,5,6,C-η:C,7,8,C-η-(5,6,7,8-tetramethylidene-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 5 ) is highly stereoselective and yields trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,6-η,oxo-σ:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 8 ) which equilibrates with the trans-η-[(1RS,2RS,4RS,5SR,6RS,7RS,8SR)-C,5,6,C-η:C,7,8,C-η-(6,7,8-trimethylidene-5-((Z)-2-oxopropylidene)-2-bicyclo[2.2.2]octyl acetate)]-bis(tricarbonyliron) ((±)- 9 ) on heating. Optically pure (–)- 9 has been prepared from the corresponding optically pure alcohol (+)- 4 . The structure and absolute configuration of (–)- 9 was established by single-crystal X-ray diffraction.  相似文献   

17.
The reaction between dibenzylideneacetone (dba) and triisopropyl sulfoxonium tetrafluoroborate has been reinvestigated. The stereochemistry of the major diasteromeric bis(gem‐dimethylcyclopropane) adduct has now been assigned as [(1RS,3RS)‐2,2‐dimethyl‐3‐phenylcyclopropyl][(1SR,3SR)‐2,2‐dimethyl‐3‐phenylcyclopropyl]methanone, C23H26O, by X‐ray crystallographic studies on a twinned crystal. The asymmetric unit contains two molecules of the adduct, the conformations of which differ in the orientation of the phenyl ring relative to the adjacent cyclopropanated double bond. The carbonyl groups of each adduct are aligned approximately along the a axis and in opposite directions to each other. The molecules pack to give a sinusoidal pattern along the b axis. This is the first acyclic bis(dimethylcyclopropyl) ketone for which an X‐ray crystal structure determination has been reported, and is also the first bis‐cyclopropanated dba analogue. The knowledge that the major diastereomer has the meso structure (and therefore the confirmation that the minor isomer is the racemate) will prove invaluable in future studies to utilize bis(dimethylcyclopropyl) ketones as reagents, in rearrangement processes, and as potential ligands and ligand precursors in organometallic chemistry.  相似文献   

18.
2‐Chloro‐4‐phenyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic [1,2‐d]benzo [ 1,4]diazepin‐1 ‐one ( III a) and 2‐chloro‐4‐methyl‐2a‐(4′‐methoxyphenyl)‐3,5‐dihydroazatetracyclic[1,2‐d]‐benzo[1,4]diazepin‐1‐one ( III b) were synthesized. 1‐Benzoyl‐2‐phenyl‐4‐(4′‐methoxyphenyl)[1,4]‐benzodiazepine ( II a) was formed through benzoylation of starting material 2‐phenyl‐4‐(4′‐methoxyphenyl)‐[1,4]benzodiazepine ( I a) with the inversion of seven‐member ring boat conformation. The thus formed β‐lactams should have four pairs of stereoisomers. However, only one pair of enantiomers (2S,2R,4R) and (2R,2aS,4S) was obtained. The mechanism and stereochemistry of the formation of these compounds were studied on the basis of nmr spectroscopy and further confirmed by X‐ray diffraction.  相似文献   

19.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

20.
Flash-vacuum thermolysis of the four diastereoisomeric 5,6-epoxy-5,6-dihydro-caryophyllenes 1–4 at 500–550°/0.1–0.7 Torr leads to the hitherto unreported enantiomers of (6RS,7RS)- and (6RS,7SR)-6,7-epoxy-6,7-dihydro-β-farnesenes ((±)- 5 and (±)- 6 , resp.). In particular, (+)- 5 is formed in 45% yield (ca. 90% ee) and is, thus, an attractive chiral building block for natural-product synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号