首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and properties of a novel class of gemini pyridinium surfactants   总被引:1,自引:0,他引:1  
A novel class of gemini pyridinium surfactants with a four-methylene spacer group was synthesized, and their surface-active properties and interactions with polyacrylamide (PAM) were evaluated by surface tension, fluorescence, and viscosity measurements. A comparison between the gemini pyridinium surfactants and their corresponding monomers was also made. The cmc's of gemini pyridinium surfactants are much lower than those of the corresponding monomeric surfactants. The C20 value is about one order of magnitude lower than that of corresponding monomers, and the longer the hydrophobic chains of the surfactants, the lower the cmc value. Surface tension measurements of the surfactant-PAM mixed systems show that the critical aggregation concentration (cac) value is much lower than the cmc value of the surfactant system alone. Viscosity measurements of the surfactant-PAM mixed systems show that the relative viscosity of the surfactant-PAM system decreased with increasing concentration of surfactant. Additionally, fluorescence measurements of the surfactant-PAM mixed system suggest the formation of surfactant-polymer aggregates, and the gemini pyridinium surfactant with longer hydrophobic chains have a stronger interaction with PAM, owing to the stronger hydrophobic interaction.  相似文献   

2.
An evaluation of the physical interactions between gemini surfactants, DNA, and 1,2-dialkyl-sn-glycero-3-phosphoethanolamine helper lipid is presented in this work. Complexation between gemini surfactants and DNA was first investigated using surface tensiometry where the surface tension profiles obtained were found to be consistent with those typically observed for mixed surfactant-polymer systems; that is, there is a synergistic lowering of the surface tension, followed by a first (CAC) and second (CMC) break point in the plot. The surfactant alkyl tail length was observed to exhibit a significant effect on the CAC, thus demonstrating the importance of hydrophobic interactions during complexation between gemini surfactants and DNA. The second study presented is an investigation of the mixing interactions between gemini surfactants and DOPE using Clint's, Rubingh's, and Motomura's theories for mixed micellar formation. The mixing interactions between the 16-3-16/16-7-16/16-12-16/16-7NH-16 gemini surfactants and DOPE were observed to be antagonistic, where the strength of antagonism was found to be dependent upon the gemini surfactant spacer group and the solution composition.  相似文献   

3.
Understanding factors responsible for the fluorescence behavior of conjugated polyelectrolytes and modulation of their behavior are important for their application as functional materials. The interaction between the anionic poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl}copolymer (PBS-PFP) and cationic gemini surfactants alpha,omega-(CmH2m+1N+(CH3)2)2(CH2)s(Br-)2 (m-s-m; m=12, s=2, 3, 5, 6, 10, and 12) has been studied experimentally in aqueous solution. These surfactants are chosen to see whether molecular recognition and self-assembly occurs between the oppositely charged conjugated polyelectrolyte and gemini surfactant when the spacer length on the surfactant is similar to the intercharge separation on the polymer. Without surfactants, PBS-PFP exists as aggregates. These are broken up upon addition of gemini surfactants. However, as anticipated, the behavior strongly depends upon spacer length (s). Fluorescence measurements show three surfactant concentration regimes: At low concentrations (<2x10(-6) M) quenching occurs and is most marked with the small spacer 12-2-12; at intermediate concentrations (approximately 2x10(-6)-10(-3) M), fluorescence intensity is constant, with a 12-carbon spacer 12-12-12 showing the strongest fluorescence; above the critical micelle concentration (CMC; approximately 10(-3) M) increases in emission intensity are seen in all cases and are largest with the intermediate spacers 12-5-12 and 12-6-12, where the spacer length most closely matches the distance between monomer units on the polymer. With longer spacer length surfactants, surface tension measurements for concentrations below the CMC reveal the presence of polymer-surfactant aggregates at the air-water interface, possibly reflecting increased hydrophobicity. Above the CMC, small-angle neutron scattering experiments for the 12-6-12 system show the presence of spherical aggregates, both for the pure surfactant and for polyelectrolyte/gemini mixtures. Molecular dynamics simulations help rationalize these observations and show that there is a very fine balance between electrostatic and hydrophobic interactions. With the shortest spacer 12-2-12, Coulombic interactions are dominant, while for the longest spacer 12-12-12 the driving force involves hydrophobic interactions. Qualitatively, with the intermediate 12-5-12 and 12-6-12 systems, the optimum balance is observed between Coulombic and hydrophobic interactions, explaining their strong fluorescence enhancement.  相似文献   

4.
We investigated the interaction between an anionic polyelectrolyte (carboxymethylcellulose) and cationic surfactants (DTAB, TTAB, and CTAB) at the air/water interface, using surface tension, ellipsometry, and Brewster angle microscopy techniques. At low surfactant concentration, a synergistic phenomenon is observed due to the co-adsorption of polyelectrolyte/surfactant complexes at the interface, which decreases the surface tension. When the surfactant critical aggregation concentration (cac) is reached, the adsorption saturates and the thickness of the adsorbed monolayer remains constant until another characteristic surfactant concentration, C0, is reached, at which all the polymer charges are bound to surfactant in bulk. Above C0, the absorbed monolayer becomes much thicker, suggesting adsorption of bulk aggregates, which have become more hydrophobic due to charge neutralization.  相似文献   

5.
The molecular mechanism and thermodynamics of the interactions between plasmid DNA and cationic surfactants were investigated by isothermal titration calorimetry (ITC), dynamic light scattering, surface tension measurements, and UV spectroscopy. The cationic surfactants studied include benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium chloride. The results indicate a critical aggregation concentration (cac) of a surfactant: above the cac the surfactant forms aggregates with plasmid DNA; below the cac, however, there is no detectable interaction between DNA and surfactant. Surfactants with longer hydrocarbon chains have smaller cac, indicating that hydrophobic interaction plays a key role in DNA-surfactant complexation. Moreover, an increase in ionic strength (I) increases the cac but decreases the critical micellization concentration (cmc). These opposite effects lead to a critical ionic strength (I(c)) at which cac = cmc; when I < I(c), cac < cmc; when I > I(c), DNA does not form complexes with surfactant micelles. In the interaction DNA exhibits a pseudophase property as the cac is a constant over a wide range of DNA concentrations. ITC data showed that the reaction is solely driven by entropy because both deltaH(o) (approximately 2-6 kJ mol(-1)) and deltaS(o) (approximately 70-110 J K(-1) mol(-1)) have positive values. In the complex, the molar ratio of DNA phosphate to surfactant is in the range of 0.63-1.05. The reaction forms sub-micrometer-sized primary particles; those aggregate at high surfactant concentrations. Taken together, the results led to an inference that there is no interaction between surfactant monomers and DNA molecules and demonstrated that DNA-cationic surfactant interactions are mediated by the hydrophobic interactions of surfactant molecules and counterion binding of DNA phosphates to the cationic surfactant aggregates.  相似文献   

6.
The sugar-based gemini surfactant with peptide bonds, N,N'-bisalkyl-N,N'-bis[2-(lactobionylamide)ethyl]hexanediamide (2C(n)peLac, in which n represents hydrocarbon chain lengths of 12 and 16), was synthesized by reacting adipoyl chloride with the corresponding monomeric surfactant N-alkyl-N'-lactobionylethylenediamine (C(n)peLac), which was obtained by reacting ethylenediamine with alkyl bromide and lactobionic acid. The adsorption and micellization properties of C(n)peLac and 2C(n)peLac were characterized by the measurement of their equilibrium and dynamic surface tension, steady-state fluorescence using pyrene as a probe, dynamic light scattering (DLS), and time-resolved fluorescence quenching (TRFQ), and their biodegradability was also investigated. The critical micelle concentration (cmc) decreases with an increase in the hydrocarbon chains from monomeric to gemini surfactants, whereas it increases with an increase in the chain length from 12 to 16 for both systems. The increases in both the hydrocarbon chain and the chain length of sugar-based surfactants reduce surface activities such as the ability to lower the surface tension, the occupied area per molecule, and the adsorption rate at the air/water interface. The sugar-based surfactants C(n)peLac and 2C(n)peLac exhibit unique aggregation behavior in aqueous solution. The DLS results indicate that the apparent hydrodynamic diameter of C(n)peLac micelles decreases sharply with increasing concentration, whereas that of 2C(n)peLac micelles decreases gradually. From the TRFQ measurement, it was observed that, as concentration increases, the aggregation numbers are almost constant for C(n)peLac, whereas they increase for 2C(n)peLac. These results imply that loosely packed micelles formed by sugar-based surfactants become tightly packed micelles as the concentration increases. Furthermore, it was found that 2C(n)peLac shows lower biodegradability than does C(n)peLac because it contains tertiary amines in the molecule.  相似文献   

7.
A series of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer were synthesized, and their surface and bulk properties were investigated by surface tension, electrical conductivity, fluorescence, viscosity, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements. An interesting phenomenon, that is, the obvious decline in surface tension upon increasing concentration above the critical micelle concentration (cmc), was found in these gemini surfactant solutions, and two explanations were proposed. This surface tension behavior could be explained by the rapid increase in the counterion activity in the bulk phase or the continued filling of the interface with increasing surfactant concentration above the cmc. More interestingly, not only vesicles but also the surfactant-concentration-induced vesicle to larger aggregate (spongelike aggregate) transition and the salt-induced vesicle and spongelike aggregate to micelle transition were found in the aqueous solutions of these gemini surfactants. The spongelike aggregate that is first reported in the cationic gemini surfactant-water binary system is probably caused by the adhesion and fusion of vesicles at high surfactant concentration.  相似文献   

8.
Cationic gemini surfactant homologues alkanediyl-alpha,omega-bis(dodecyldiethylammonium) bromide, [C12H25(CH3CH2)2N(CH2)SN(CH2CH3)2C12H25]Br2, where S = 4, 6, 8, 10, or 12, referred to as C12CSC12(Et), and cationic bolaamphiphiles BPHEAB (biphenyl-4,4'-bis(oxyhexamethylenetriethylammonium) bromide), PHEAB (phenyl-4,4'- bis(oxyhexamethylenetriethylammonium) bromide) were synthesized, and their aggregation behaviors in aqueous solution were studied and compared by means of dynamic light scattering, fluorescence entrapment, and transmission electron microscopy. Spherical vesicles were found in the aqueous solutions of these gemini and bola surfactants, which can be attributed to the increase of the hydrocarbon parts of the polar headgroup of the surfactants. In combination with the result of the other gemini with headgroup of propyl group, the increase of the hydrophobic parts of the surfactant polar headgroup will be beneficial to enhance the aggregation capability of the gemini and bola surfactants. Both of the vesicles formed in the gemini and bola systems showed good stabilities with time and temperature, but different stability with salt due to the different membrane conformations of surfactant molecules in the vesicles.  相似文献   

9.
The adsorption and micellization behavior of novel sugar-based gemini surfactants (N,N(')-dialkyl-N,N(')-digluconamide ethylenediamine, Glu(n)-2-Glu(n), where n is the hydrocarbon chain length of 8, 10 and 12) has been studied on the basis of static/dynamic surface tension, fluorescence, dynamic light scattering (DLS) and cryogenic transmission electron microscope (cryo-TEM) data. The static surface tension of the aqueous Glu(n)-2-Glu(n) solutions measured at the critical micelle concentration (cmc) is observed to be significantly lower than that of the corresponding monomeric surfactants. This suggests that the gemini surfactants, newly synthesized in the current study, are able to form a closely packed monolayer film at the air/aqueous solution interface. The greater ability in the molecular association is supported by the remarkably (approximately 100-200 times) lower cmc of the gemini surfactants compared with the corresponding monomeric ones. With a combination of the fluorescence and DLS data, a structural transformation of the Glu(n)-2-Glu(n) micelles is suggested to occur with an increase in the concentration. The cryo-TEM measurements clearly confirm the formation of worm-like micelles of Glu(12)-2-Glu(12) at the concentration well above the cmc.  相似文献   

10.
The mixed micellization and interfacial behavior of pyridinium gemini surfactants, 1,1'-(1,1'-(ethane-1,2-diylbis-(sulfanediyl))bis(alkane-2,1-diyl))dipyridinium bromide, i.e., [12-(S-2-S)-12], [14-(S-2-S)-14], [16-(S-2-S)-16] with a phenothiazine tranquilizer drug, promethazine hydrochloride (PMT), has been investigated by conductivity, surface tension and steady state fluorescence measurements. Different spectroscopic techniques like fluorescence, UV-visible and NMR were also employed to understand the nature of interactions between the pyridinium gemini surfactants and PMT. The various micellar, interfacial and associated thermodynamic parameters for different mole fractions of PMT-pyridinium gemini surfactant mixtures have been evaluated. Synergism was observed in the mixed micelle as well as the monolayer formed by these mixtures. The fluorescence quenching experiment indicates that the interactions between PMT and surfactants are hydrophobic in nature. The UV-visible measurements reveal the distinct formation of a drug-surfactant complex. The detailed mechanism for the type of interactions was further studied by NMR titrations which show cation-π interactions between PMT and pyridinium gemini surfactant molecules.  相似文献   

11.
We have studied the surface complexation of DNA with a cationic surfactant (DTAB) using a combination of methods: dynamic surface tension, ellipsometry and Brewster angle microscopy. Below the surfactant critical aggregation concentration (cac), complexation occurs only at the surface, and the results are consistent with neutralization of the surfactant charges by the free polymer ions. Above the cac, surfactant starts to bind cooperatively to DNA in the bulk, and adsorption of the preformed hydrophobic surfactant DNA aggregate is now possible, leading to thick surface layers. At still higher concentrations of surfactant (still below saturation of binding in the bulk), there is decrease in adsorption due to competition with bulk aggregates. Finally, as surfactant concentration is increased still further, bulk aggregates become less soluble and large amounts are adsorbed, forming a surface layer, which is solid-like and brittle.  相似文献   

12.
The surface properties of mixed system containing gemini anionic surfactant 1,2,3,4-butanetetracarboxylic sodium, 2,3-didodecyl ester and partly hydrolyzed polyacrylamide were investigated by surface tension measurements and oscillating bubble methods. The influences of surfactant concentration, dilational frequency, temperature, pH, as well as salts on dilational modulus were explored. Meanwhile, the interfacial tension relaxation method was employed to obtain the characteristic time of surface relaxation process. The polymers play important roles in changing the interfacial properties especially at lower surfactant concentration. The possible mechanism of the polymer in changing the interfacial properties is proposed. Both the hydrophobic and electrostatic interaction among the surfactants and polymers dominate the surface properties of mixed system. These dynamic properties are of fundamental interest in understanding the structure of adsorption layers, dynamics of surfactant molecules, and their interaction with polymers at the surface.  相似文献   

13.
A new gemini steroid surfactant derived from 3alpha,12alpha-dihydroxy-5beta-cholan-24-amine (steroid residue) and ethylenediamintetraacetic acid (spacer) was synthesized and characterized in aqueous solution by surface tension, fluorescence intensity of pyrene, and light scattering (static and dynamic) measurements. These techniques evidence the existence of a threshold concentration (cac), below which a three layers film is formed at the air-water interface. Above the cac, two types of aggregates--micelles and vesicle-like aggregates--coexist in a metastable state. Filtration of a solution with a starting concentration of 2.6 mM (buffer 150 mM, pH 10) allows isolation of the micelles, which have an average aggregation number of 12, their density being 0.28 g cm(-3). Under conditions where only the vesicle-like aggregates are detected by dynamic light scattering, a value of 5.5 x 10(4) was obtained for their aggregation number at 30 microM, their density being 6.8 x 10(-4) g cm(-3). At high concentrations, the intensity ratio of the vibronic peaks of pyrene, I1/I3, (=0.68) is very close to published values for deoxycholate micelles, indicating that the probe is located in a region with a very low polarity and far from water. A hypothesis to explain the observed aggregation behavior (small aggregates are favored with increasing gemini concentration) is outlined.  相似文献   

14.
We have studied the melting of polymeric amphiphilic micelles induced by small-molecule surfactant and explained the results by experimental determination of the interfacial tension between the core of the micelles and the surfactant solutions. Poly(n-butyl acrylate-b-acrylic acid) (PBA-b-PAA) amphiphilic diblock copolymers form kinetically frozen micelles in aqueous solutions. Strong interactions with surfactants, either neutral or anionic [C12E6, C6E4, sodium dodecyl sulfate (SDS)], were revealed by critical micelle concentration (cmc) shifts in specific electrode and surface tension measurements. Since both polymer and surfactant are either neutral or bear negative charges, the attractive interactions are not due to electrostatic interactions. Light scattering, neutron scattering, and capillary electrophoresis experiments showed important structural changes in mixed PBA-b-PAA/surfactant systems. Kinetically frozen micelles of PBA-b-PAA, that are hardly perturbed by concentration, ionization, ionic strength, and temperature stresses, can be disintegrated by addition of small-molecule surfactants. The interfacial energy of the PBA in surfactant solutions was measured by drop shape analysis with h-PBA homopolymer drops immersed in small-molecule surfactant solutions. The PBA/water interfacial energy gammaPBA/H2O of 20 mN/m induces a high energy cost for the extraction of unimers from micelles so that PBA-b-PAA micelles are kinetically frozen. Small-molecule surfactants can reduce the interfacial energy gammaPBA/solution to 5 mN/m. This induces a shift of the micelle-unimer equilibrium toward unimers and leads, in some cases, to the apparent disintegration of PBA-b-PAA micelles. Before total disintegration, polymer/surfactant mixtures are dispersions of polydisperse mixed micelles. Based on core interfacial energy arguments, the disintegration of kinetically frozen polymeric micelles was interpreted by gradual fractionation of objects (polydisperse dispersion mechanism), whereas the disintegration of polymeric micelles in a thermodynamically stable state was interpreted by an exchange between a population of large polymer-rich micelles and a population of small surfactant-rich micelles (bidisperse dispersion mechanism). Finally, in our system and other systems from the literature, interfacial energy arguments could explain why the disintegration of polymer micelles is either partial or total as a function of the surfactant type and concentration and the hydrophobic block molar mass of the polymer.  相似文献   

15.
双子表面活性剂溶液的表面活性的研究   总被引:8,自引:0,他引:8  
研究了阳离子型双子表面活性剂,二溴化-N,N'-二(二甲基烷基)乙(已)二铵,以及它们与阴离子表面活性剂十二烷基苯磺酸钠(SDBS)复配体系的表面活性,测定上述体系的平衡态表面张力。结果表明:双子表面活性剂的表面活性大大高于十二烷基三甲溴化铵(DTAB);对于两种双子表面活性剂,其表面活性和表面张力时间效应受其联接基团的影响远大于其烷基链的影响。双子表面活性剂与SDAB复配,其协同效应不如DTAB。动表面张力测定得到它们的各种参:t~i,t~m,γ~m,t*和n等值,结果表面双子表面活性剂的瞬时活性也高于DTAB。  相似文献   

16.
表面活性剂与有机小分子作用不仅能提高表面活性剂的聚集能力,还能提高小分子的溶解度、稳定性等应用性能,因此研究二者之间的相互作用机理对于促进表面活性剂的发展和实际应用具有重要意义。本工作提出了一种利用功能有机小分子调控表面活性剂聚集行为,进而提高不稳定小分子自身稳定性的新策略。利用表面张力、紫外可见吸收光谱、荧光光谱、动态光散射、等温滴定量热和核磁共振技术研究了在p H为7.0时,叶酸分别与十二烷基硫酸钠(SDS)、十二烷基三甲基溴化铵(DTAB)、季铵盐Gemini 12-6-12和季铵盐线性三聚12-3-12-3-12四种表面活性剂之间的相互作用及其导致的叶酸光氧化降解性能的变化,结果表明,阴离子表面活性剂SDS抑制叶酸光氧化降解的效率较低,而阳离子表面活性剂都能够显著抑制叶酸的光氧化降解,且随着表面活性剂寡聚度的增加,抑制效果增强,所需表面活性剂的浓度显著降低,寡聚表面活性剂12-3-12-3-12的抑制效率高达96%。  相似文献   

17.
The adsorption of the monomeric/gemini surfactant mixtures at the silica/aqueous solution interface has been characterized on the basis of quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) data. The gemini surfactant employed in this study was cationic 1,2-bis(dodecyldimethylammonio)ethane dibromide (12-2-12). This surfactant was mixed with monomeric surfactants (dodecyltrimethylammonium bromide (DTAB), hexadecyltrimethylammonium bromide (HTAB), and octaoxyethylenedodecyl ether (C(12)EO(8))) in the presence of an added electrolyte (NaBr). The key finding in our current study is that the addition of the gemini surfactant (12-2-12) makes significant impact on the adsorption properties even when the mole fraction of 12-2-12 is quite low in the surfactant mixtures. This is suggested by the experimental results that (i) the QCM-D adsorption isotherms measured for the monomeric/gemini surfactant mixtures shift to the region of lower surfactant concentrations compared with the monomeric single systems; (ii) the adsorbed layer morphology largely depends on the mole fraction of 12-2-12 in the surfactant mixtures, and the increased 12-2-12 mole fraction results in the less curved surface aggregates; and (iii) the addition of 12-2-12 yields a relatively rigid adsorbed layer when compared with the layer formed by the monomeric single systems. These adsorption properties result from the fact that the more favorable interaction of 12-2-12 with the silica surface sites drives the overall surfactant adsorption in these mixtures, which is particularly obvious in the region of low surfactant concentrations and at the 12-2-12 low mole fractions. We believe that this knowledge should be important when considering the formulation of gemini surfactants into various chemical products.  相似文献   

18.
Mixed micelle formation of binary cationic gemini (12-s-12, s=4, 6) and zwitterionic (N-dodecyl-N,N-dimethylglycine, EBB) surfactants has been investigated by measuring the surface tension of aqueous solution as a function of total concentration at various pH values from acidic to basic, under conditions of 298.15 K and atmospheric pressure. The results were analyzed by applying regular solution theory (RST), and Motomura's theory, which allows for the calculation of the excess Gibbs energy of micellization purely on the basis of thermodynamic equations. The synergistic interactions of all the investigated cationic gemini + zwitterionic surfactants mixtures were found to be dependent upon the pH of the solution and the length of hydrophobic spacer of gemini surfactant. The evaluated excess Gibbs free energy is negative for all the systems.  相似文献   

19.
疏水缔合聚丙烯酰胺与阳离子双子表面活性剂的相互作用   总被引:1,自引:0,他引:1  
通过表面张力法和电导率法分别考察了阳离子双子表面活性剂(12-2-12)与非离子疏水缔合聚丙烯酰胺(HMPAM)和普通聚丙烯酰胺(PAM),传统表面活性剂十二烷基三甲基溴化铵(DTAB)与HMPAM和PAM之间的相互作用。结果表明,12-2-12 HMPAM复合体系与12-2-12水溶液体系相比,在w(聚合物含量)CMC时,复合体系的电导率(κ)具有下降的趋势,且κ随着w的增大下降的趋势越明显,说明12-2-12与HMPAM之间存在相互作用。  相似文献   

20.
Interactions in an oppositely charged surfactant mixture composed of a gemini surfactant (bis(quaternary ammonium bromide)) and a bile salt (sodium cholate) in water were studied at 30°C. A combination of techniques was used including surface tension, conductometry, light scattering, light microscopy, and microelectrophoretic measurements. A strong dependence of the phase behavior on the molar ratio and actual concentration of surfactants was found. The interplay between electrostatic effects, geometry of molecules, and dissimilar separation of the hydrophobic and hydrophilic moieties in the surfactants dictate the interaction mode and the microstructures formed. Instead of precipitation, in the equivalent mixtures formation of complexes, mixed micelles, vesicles, coacervates, and solid crystalline phases have been observed. The extent of interacting forces in mixed micelles formed in equivalent mixtures was evaluated by regular solution theory. A relatively high negative value of interaction parameter indicated a strong attractive interaction between surfactants. The compositions of both mixed micelles and mixed monolayer are found to be almost equimolar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号