共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Dirac equation describing an electron moving in a uniform and cylindrically symmetric magnetic field which may be the result of the self-consistent mean field of the electrons themselves in a neutron star, we have obtained the eigen solutions and the orbital magnetic moments of electrons in which each eigen orbital can be calculated. From the eigen energy spectrum we find that the lowest energy level is the highly degenerate orbitals with the quantum numbers pz = 0, n = 0, and m ≥0. At the ground state, the electrons fill the lowest eigen states to form many Landau magnetic cells and each cell is a circular disk with the radius λfree and the thickness λe, where λfree is the electron mean free path determined by Coulomb cross section and electron density and λe is the electron Compton wavelength. The magnetic moment of each cell and the number of cells in the neutron star are calculated, from which the total magnetic moment and magnetic field of the neutron star can be calculated. The results are compared with the observational data and the agreement is reasonable. 相似文献
2.
βdecay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions 67 Ni(β-)67 Cu and 62 Mn\beta -62 Fe are investigated as examples. The results show that a weak magnetic field has little effect on βdecay but a strong magnetic field (B>1012G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process. 相似文献
3.
The influences of electron screening (ES) and electron energy correction (EEC) are investigated by superstrong magnetic field (SMF). We also discuss in detail the discrepant factor between our results and those of Fushiki, Gudmundsson and Pethick (FGP) in SMF. The results show that SMF has only a slight effect on ES when B < 109 T on the surfaces of most neutron stars. Whereas for some magnetars, SMF influence ES greatly when B > 109 T . For instance, due to SMF the ES potential may be increased about 23.6% and the EEC may be increased about 4 orders of magnitude at ρ/μe = 1.0 × 106 mol/cm3 and T9 = 1. On the other hand, the discrepant factor shows that our results are in good agreement with FGP’s when B < 109 T . But the difference will be increased with increasing SMF. 相似文献
4.
Based on the p-f shell model, the effect of strong magnetic field on neutrino energy loss rates by electron capture is investigated. The calculations show that the magnetic field has only a slight effect on the neutrino energy loss rates in the range of 108—1013G on the surfaces of most neutron stars. But for some magnetars, the range of the magnetic field is 1013—1018G, and the neutrino energy loss rates are greatly reduced, even by more than four orders of magnitude due to the strong magnetic field. 相似文献
5.
Based on the p-f shell model,the effect of strong magnetic field on neutrino energy loss rates by electron capture is investigated.The calculations show that the magnetic field has only a slight effect on the neutrino energy loss rates in the range of 108-1013 G on the surfaces of most neutron stars.But for some magnetars,the range of the magnetic field is 1013-1018 G,and the neutrino energy loss rates are greatly reduced,even by more than four orders of magnitude due to the strong magnetic field. 相似文献
6.
The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we
use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained
from the relativistic nuclear mean field theory is taken and extended to include strong magnetic field. It is found that magnetized
neutron stars support higher maximum mass whereas the effect of magnetic field on radial stability for observed neutron star
masses is minimal. 相似文献
7.
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described. 相似文献
8.
In this paper,we include the density dependence behavior of the symmetry energy in the improved quark mass density dependent (IQMDD) model.Under the mean field approximation,this model is applied to investigate neutron star matter and neutron stars successfully.Effects of the density dependence of the symmetry energy on neutron stars are described. 相似文献
9.
Effect of strong magnetic field on electron capture of iron group nuclei in crusts of neutron stars 下载免费PDF全文
In this paper electron capture on iron group nuclei in crusts of
neutron stars in a strong magnetic field is investigated. The
results show that the magnetic fields have only a slight effect on
electron capture rates in a range of 10$^{8}-10^{13}$G on surfaces of
most neutron stars, whereas for some magnetars the magnetic fields
range from 10$^{13}$ to 10$^{18}$~G. The electron capture rates of
most iron group nuclei are greatly decreased, reduced by even four
orders of magnitude due to the strong magnetic field. 相似文献
10.
The relativistic theory of the inverse beta-decay of polarized neutron,ν
e
+n → >
p +e
-, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the
magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic field and
also for the proton recoil motion. The effect of nucleons anomalous magnetic moments in strong magnetic fields is also discussed.
We examine the cross-section for different energies and directions of propagation of the initial neutrino accounting for neutron
polarization. It is shown that in the super-strong magnetic field the totally polarized neutron matter is transparent for
neutrinos propagating antiparallel to the direction of polarization. The developed relativistic approach can be used for calculations
of cross-sections of the other URCA processes in strong magnetic fields. 相似文献
11.
We study the hadron-quark phase transition in the interior of neutron stars, and examine the influence of the nuclear equation of state on the phase transition and neutron star properties. The relativistic mean field theory with several parameter sets is used to construct the nuclear equation of state, while the 相似文献
12.
J. Piekarewicz 《The European Physical Journal A - Hadrons and Nuclei》2007,32(4):537-541
The neutron radius of a heavy nucleus is a fundamental nuclear-structure observable that remains elusive. Progress in this
arena has been limited by the exclusive use of hadronic probes that are hindered by large and controversial uncertainties
in the reaction mechanism. The parity radius experiment at the Jefferson Laboratory offers an attractive electro-weak alternative
to the hadronic program and promises to measure the neutron radius of 208Pb accurately and model independently via parity-violating electron scattering. In this contribution we examine the far-reaching
implications that such a determination will have in areas as diverse as nuclear structure, atomic parity violation, and astrophysics. 相似文献
13.
The influences of σ^* and Ф mesons, temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, A, ∑^-, ∑^,∑^+,^-, ^0} system. It is found that, compared with that without considering σ^* and Ф mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ^* and Ф mesons. 相似文献
14.
The influences of σ* and Φ mesons,temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star(PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n,p,Λ,Σ+,Σ0,Σ+,Ξ-,Ξ0} system.It is found that,compared with that without considering σ* and Φ mesons,the moment of inertia decreases.It is also found that the higher the temperature,the larger the incompressibility and symmetry energy coeficient,and the larger the moment of inertia of a PNS.The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ* and Φ mesons. 相似文献
15.
D. N. Aguilera 《The European Physical Journal A - Hadrons and Nuclei》2007,31(4):828-830
We present results for the spin-1 color-spin-locking (CSL) phase using a NJL-type model in two-flavor quark matter for compact
stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied.
We find small energy gaps ≃ 1MeV, which make the CSL matter composition and the EoS not very different from the normal quark
matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences
in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores,
when asymmetric flavor pairing is suppressed, could be covered by the CSL phase. 相似文献
16.
求解了恒定均匀的强磁场中核子的能谱和波函数,在手征表象中给出含核子反常磁矩(AMM)项的Dirac方程的解;并且计算了中子星内壳层物质的物态方程(EOS)和粒子丰度,发现在强磁场中磁能将使中子星内壳层的压强增加但物质仍然是丰中子,AMM项对质子的极化度有明显效应. 相似文献
17.
18.
在Walecka模型的平均场近似下,研究了由质子、中子和电子组成的中子星物质在均匀强磁场中的性质,发现磁场增强,物态方程会在一定程度上变硬,中子所占比例显著增加,质子和电子所占比例会显著减少,磁场对物态方程的影响比它对粒子组分的影响小.本文还分别利用流体力学公式和热力学公式分别计算了中子星物质的压强,发现磁场越强,用这两种方式计算的压强越接近,当磁场为1014T时,它们完全重合. 相似文献
19.
Within the Bayesian framework, using an explicitly isospin-dependent parametric equation of state (EOS) for the core of neutron stars (NSs), we studied how the NS EOS behaves when we confront it with the tidal deformabilities \begin{document}$ \Lambda_{1.4} $\end{document} ![]()
![]()
of canonical NSs with different error and different lower boundaries, and with the tidal deformabilities of massive NSs. We found that it does not significantly improve the constraints on the NS EOS but has a weak effect on narrowing down the slope parameter of the symmetry energy by decreasing the measurement errors of \begin{document}$ \Lambda_{1.4} $\end{document} ![]()
![]()
. Both the isospin-dependent and isospin-independent parts of the NS EOS were significantly constrained and raised as the tidal deformabilities of massive NSs were adopted in the calculations, especially in high-density regions. We also found that \begin{document}$ \Lambda_{1.4} $\end{document} ![]()
![]()
is more competent to limit the curvature parameter than the slope parameter of the symmetry energy, whereas the opposite occurs for the radius of canonical NSs \begin{document}$ R_{1.4} $\end{document} ![]()
![]()
. The tidal deformability of an NS with two times the solar mass \begin{document}$ \Lambda_{2.0} $\end{document} ![]()
![]()
is more sensitive to skewness than the curvature parameter of the symmetry energy, and \begin{document}$ \Lambda_{1.4} $\end{document} ![]()
![]()
and \begin{document}$ R_{1.4} $\end{document} ![]()
![]()
have no correlation with the former. 相似文献
20.
极化中子照相技术通过分析极化中子束的自旋相移对样品磁场进行成像,目前已发展出多种成像技术方案,其中能量选择法和自旋回波法极化中子成像技术从不同的原理出发,解决了极化中子照相中磁场量化的周期解问题,同时避免装置极化效率等参数的影响,可以实现较高的量化精度.本文对两种极化中子照相技术方案进行研究,通过对单色器能量分辨率和装置极化效率等关键参数的分析和模拟,确定在研究堆上开展相关实验的可行性,并初步明确其量化能力和适用范围.相关结果可为极化中子照相的实验数据处理技术研究及装置设计提供参考. 相似文献