首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics letters》2002,350(5-6):628-635
Spectral characteristics of 6-hydroxyquinoline (6-HQ) in presence of trimethylamine (TMA) were investigated in polar and non-polar solvents. The steady-state absorption, emission and excitation spectra along with the transient parameters reveal a strong ground state hydrogen-bonded complex formation between the 6-HQ and TMA molecules in both the media. A large Stokes shifted emission due to the formation of contact ion-pairs is observed in these media. However, in acetonitrile the longer decay time (≈12 ns) with relatively broadened emission spectra can be attributed to the presence of solvent separated ion-pairs in addition to contact ion-pairs. The ground state equilibrium constant for complex formation has been determined. The observed quenching behaviour of the fluorescence emission from the normal molecule with TMA appears to be static in nature.  相似文献   

2.
By means of ab initio HF methods, the ground state structures of 8-hydroxyquinoline (8-HQ) monomers and dimers were optimized using the 6-311+g* and 6-31G basis sets, respectively. The lowest singlet excited states of 8-HQ monomers and dimers have been studied by the single-excitation configuration interaction (CIS) approach at the same level. In the studies of the potential energy surface, it was found that all the stable configurations corresponded to enol form. The UV-vis and fluorescence spectra of 8-HQ monomers and dimers under a solvent effect condition were also calculated using the TD-B3LYP/6-31+G* method based on the HF- and CIS-optimized geometries. The computed absorption and fluorescence spectral characteristics for monomers and dimers were in good agreement with previously reported experimental values. The results also show that 8-HQ has very poor fluorescence in solvents.  相似文献   

3.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

4.
A novel zinc phthalocyanine containing four 17-crown-5 ether voids(17C5ZnPc) has been synthesized and characterized. UV-visible absorption and fluorescence emission spectra and as-sociated photophysical parameters have been determined. In contrast to most of the crown ether substituted phthalocyanines, no cofacial dimer formation is observed in the presence of alkali metal salts. In addition to the fluorescence at 710 nm from S1, a strong upper excited state (Soret 52) emission around 424 nm has been detected for the first time in the phthalocyanine series. Fluorescence decay of S1 and S2 emission can be analyzed by mono- and biexponential fits respectively. X-ray structure analysis showed that the crown ether unit is conformationally deformed and oblate that may account for the unusual spectroscopic properties.  相似文献   

5.
The relaxation of electronically excited atomic manganese isolated in solid rare gas matrices is observed from recorded emission spectra, to be strongly site specific. z 6P state excitation of Mn atoms isolated in the red absorption site in Ar and Kr produces narrow a 4D and a 6D state emissions while blue-site excitation produces z 6P state fluorescence and broadened a 4D and a 6D emissions. MnXe exhibits only a single thermally stable site whose emission at 620 nm is similar to the broad a 6D bands produced with blue-site excitation in Ar and Kr. Thus in Ar(Kr), excitation of the red site at 393 (400) nm produces narrow line emissions at 427.5 (427.8) and 590 (585.7) nm. From their spectral positions, linewidths, and long decay times, these emission bands are assigned to the a 4D72 and a 6D92 states, respectively. Excitation of the blue site at 380 (385.5) nm produces broad emission at 413 (416) nm which, because of its nanosecond radiative lifetime, is assigned to resonance z 6P --> a 6S fluorescence. Emission bands at 438 (440) and 625 (626.8) nm, also produced with blue-site excitation, are broader than their red-site equivalents at 427.5 and 590 nm (427.8 and 585.7 nm in Kr) but from their millisecond and microsecond decay times are assigned to the a 4D and a 6D states. The line features observed in high resolution scans of the red-site emission at 427.5 and 427.8 nm in MnAr and MnKr, respectively, have been analyzed with the W(p) optical line shape function and identified as resolved phonon structure originating from very weak (S=0.4) electron-phonon coupling. The presence of considerable hot-phonon emission (even in 12 K spectra) and the existence of crystal field splittings of 35 and 45 cm(-1) on the excited a 4D72 level in Ar and Kr matrices have been identified in W(p) line shape fits. The measured matrix lifetimes for the narrow red-site a 6D state emissions (0.29 and 0.65 ms) in Ar and Kr are much shorter than the calculated (3 s) gas phase value. With the lifetime of the metastable a 6D92 state shortened by four orders of magnitude in the solid rare gases, it is clear that the probability of the "forbidden" a 6D --> a 6S atomic transition is greatly enhanced in the solid state. A novel feature identified in the present work is the large width and shifted 4D and 6D emissions produced for Mn atoms isolated in the blue sites of Ar and Kr. In contrast, these states produce narrow, unshifted (gas-phase-like) 4D and 6D state emissions from the red site.  相似文献   

6.
A hydrogen-bonded network formed between 6-hydroxyquinoline (6-HQ) and acetic acid (AcOH) has been characterized using a time-resolved fluorescence technique. In the bridged hydrogen-bonded complex of cis-6-HQ and AcOH, an excited-state reaction proceeds via proton transfer along the hydrogen bond, resulting in a keto-tautomer (within approximately 200 ps) that exhibits large Stokes-shifted fluorescence. The unbridged complex also undergoes excited-state proton transfer, but the Stokes shift is rather smaller.  相似文献   

7.
《Chemical physics letters》2003,367(5-6):637-644
In this Letter, MP2, DFT and CASSCF calculations were carried out to investigate proton transfer reactions of 8-hydroxyquinoline (8-HQ) and its one-water complex (8-HQ-H2O). Since the forward reactions from the normal form (N) to the tautomer form (T) in the ground state have a considerable barrier and the reverse processes nearly have no barrier, the tautomerization reactions from N to T proceed with little probability in the ground state of 8-HQ and 8-HQ-H2O. After photoexcitation, the excited-state proton transfer reactions proceed very easily for both 8-HQ and 8-HQ-H2O, which are mainly responsible for lack of fluorescence for 8-HQ in aqueous solution.  相似文献   

8.
A recently synthesized cationic water-soluble poly(fluorenevinylene-co-phenylenevinylene) was studied by means of steady state and femtosecond time resolved upconversion spectroscopy in aqueous and EtOH solutions. Steady state spectroscopic measurements showed that the polymer emits at the blue-green spectral region and that aggregates are formed in concentrated polymer solutions. The fluorescence dynamics of the polymer in concentrated solutions, studied at a range of emission wavelengths, exhibited a wavelength dependent and multiexponential decay, indicating the existence of various decay mechanisms. Specifically, a rapid decay at short emission wavelengths and a slow rise at long wavelengths were observed. Both features reveal an energy transfer process from isolated to aggregated chains. The contribution of the energy transfer process as well as of the isolated chains and the aggregates on the overall fluorescence decay of the polymer was determined. The dependence of the energy transfer rate and efficiency on polymer concentration was also examined.  相似文献   

9.
Photophysical properties of 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) in various solvents were investigated using time- and space-correlated single photon counting. DASPMI is known to selectively stain mitochondria in living cells.1,2 The uptake and fluorescence intensity of DASPMI in mitochondria is a dynamic measure of membrane potential. Hence, an endeavor has been made to elucidate the mechanism of DASPMI fluorescence by obtaining spectrally resolved fluorescence decays in different solvents. A biexponential decay model was sufficient to globally describe the wavelength-dependent fluorescence in ethanol and chloroform. While in glycerol, a three-exponential decay model was necessary for global analysis. In the polar low-viscous solvent water, a monoexponential decay model fitted the decay data. The sensitivity of DASPMI to solvent viscosity was analyzed using various proportions of glycerol-ethanol mixtures. The lifetimes were found to increase with increasing solvent viscosity. The negative amplitudes of the short lifetime component found in chloroform and glycerol at the longer wavelengths validated the formation of new excited-state species from the initially excited state. Time-resolved emission spectra in chloroform and glycerol showed a biphasic increase of spectral width and emission maxima. The spectral width had an initial fast increase within 150 ps and a near constant thereafter. A three-state model of generalized scheme, on the basis of successive formation of locally excited state (LE), intramolecular charge transfer state (ICT), and twisted intramolecular charge transfer (TICT) state, has been proposed to explain the excited-state kinetics. The presumed role of solvation dynamics of ICT and TICT states leading to the asymmetrical broadening and structureless fluorescence has been substantiated by the decomposition of time-resolved emission spectra in chloroform, glycerol, and ethanol/glycerol mixtures.  相似文献   

10.
11.
We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.  相似文献   

12.
The ground and excited state proton transfer reactions of a new orthohydroxy Schiff base, salicylidine-3,4,7-methyl amine (SMA) has been studied by means of absorption, emission and time resolved fluorescence spectroscopy in some polar protic and aprotic solvents at room temperature and 77K. The spectral behavior of SMA has been investigated both in neutral and basic conditions. The intramolecularly hydrogen bonded enol and zwitterion have been detected in pure methanol and ethanol, the anion is detected in basic condition. At 77K, SMA shows phosphorescence in pure methanol and ethanol. From nanosecond measurements and quantum yields of fluorescence, we have estimated the decay rates of proton transfer reaction in methanol and ethanol.  相似文献   

13.
Several important aspects of fluorescence decay analysis are addressed and tested against new experimental measurements. A simulated-annealing method is described for deconvoluting the instrument response function from a measured fluorescence decay to yield the true decay, which is more convenient for subsequent fitting. The method is shown to perform well against the conventional approach, which is to fit a convoluted fitting function to the experimentally measured decay. The simulated annealing approach is also successfully applied to the determination of an instrument response function using a known true fluorescence decay (for rhodamine 6G). The analysis of true fluorescence decays is considered critically, focusing specifically on how a distribution of decay constants can be incorporated in to a fit. Various fitting functions are applied to the true fluorescence decays of 2-aminopurine in water-dioxane mixtures, in a dinucleotide, and in DNA duplexes. It is shown how a suitable combination of exponential decays and non-exponential decays (based on a Γ distribution of decay constants) can provide fits of equal quality to the conventional multi-exponential fits used in the majority of previous studies, but with fewer fitting parameters. Crucially, the new approach yields decay-constant distributions that are physically more meaningful than those corresponding to the conventional multi-exponential fit. The methods presented here should find wider application, for example to the analysis of transient-current or optical decays and in F?rster resonance energy transfer (FRET).  相似文献   

14.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

15.
The proton transfer reaction and the spectroscopic properties of di-(2-hydroxy-3-formyl-5-tert butyl phenyl) methane (HFPM) have been examined in different nonpolar and polar solvents at room temperature and 77 K, by means of absorption, emission and time resolved fluorescence spectroscopy. In the ground state, the primary closed form has been identified in all the nonpolar and polar solvents and the anion is detected only in presence of base in some of the polar solvents. After photoexcitation, the excited state intramolecular proton transfer (ESIPT) is indicated by a large Stokes shifted emission (approximately 10,600 cm-1) in all the nonpolar and polar solvents used, except in water and ethylene glycol (EG). The ESIPT band is likely to be originated from the enol tautomer of the HFPM. Two types of anion and H-bonded complex have been detected in the excited state. In water and EG, only anion and H-bonded complex have been detected in the excited state. At 77 K, HFPM shows phosphorescence in pure ethanol, and in n-hexane in presence of triethylamine. It has been suggested that the appearance of phosphorescence is due to the rotation of the formyl group. The measured nonradiative decay rates have always been found to dominate in the decay processes of the excited state of HFPM. Some semiempirical calculations have been undertaken to rationalize the experimental findings.  相似文献   

16.
The excited electronic state dynamics of N(6),N(6)-dimethyladenine (DMAde), a molecule known to emit dual fluorescence, has been studied in aqueous solution using femtosecond fluorescence up-conversion spectroscopy. Time profiles of the fluorescence of DMAde excited at lambda= 258 nm were measured at a series of wavelengths in the range 320 nm or= 500 nm), which appeared slightly delayed compared to the UV fluorescence, the long-lived fluorescence component (tau(3)) dominated, the second component (tau(2)) disappeared. The results are consistent with the assumption that DMAde is primarily excited to a short-lived local excited (LE) electronic state that fluoresces mostly in the UV and decays rapidly, on a approximately 0.5 ps timescale, to an intramolecular charge transfer (ICT) state that emits only at longer wavelengths in the visible spectrum. The fluorescence-time profiles and transient fluorescence spectra reconstructed from the time profiles provided further information on secondary relaxation processes within and between the excited states and their non-radiative relaxation to the electronic ground state.  相似文献   

17.
Lü Ling-Ling 《结构化学》2009,28(10):1226-1235
The excited-state intramolecular hydrogen abstraction reactions of butanal have been investigated using the CAS-MP2/6-311+G^*//CASSCF/6-31G^* methods. Calculated results show that the hydrogen transfer induced fluorescence quenching of the n,π^*-excited state of covalent butanal with three paths: (1) The first path corresponds to direct S0-react reconstitution, which involves the first S1 decay by partial hydrogen atom transfer. (2) The second stepwise mechanism can be viewed as a full hydrogen atom transfer followed by a partial hydrogen atom back transfer, electron transfer (near S1/S0 or S0-TS) and finally a proton transfer to S0-react. (3) On the triplet surface, the surface crossing to the singlet state would be clearly much efficient at the T1/S0 region due to the large SOC value of 8.3 cm^-1. The S0-react decay route from T1/S0 was studied with an intrinsic reaction coordinate (IRC) calculation at the CASSCF level, resulting in the S0-React minimum.  相似文献   

18.
Spectral and photophysical investigations of 4′-(p-aminophenyl)-2,2′:6′,2′′-terpyridine (APT) have been performed in various solvents with different polarity and hydrogen-bonding ability.The emission spectra of APT are found to exhibit dual fluorescence in polar solvents, which attributes to the local excited and intramolecular charge transfer states, respectively. The two-state model is proven out for APT in polar solvent by the time-correlated single photon counting emission decay measurement. Interestingly, the linear relationships of different emission maxima and solvent polarity parameter are found for APT in protic and aprotic solvents, because of the hydrogen bond formation between APT and alcohols at the amino nitrogen N25. Furthermore, the effects of the complexation of the metal ion with tpy group of APT and the hydrogen bond formation between APT with methanol at the terpyridinenitrogen N4—N8—N14 are also presented. The appearance of new long-wave absorption and fluorescence bands indicates that a new ground state of the complexes is formed.  相似文献   

19.
Absorption and emission spectra of 9-N,N-dimethylaniline decahydroacridinedione (DMAADD) have been studied in different solvents. The fluorescence spectra of DMAADD are found to exhibit dual emission in aprotic solvents and single emission in protic solvents. The effect of solvent polarity and viscosity on the absorption and emission spectra has also been studied. The fluorescence excitation spectra of DMAADD monitored at both the emission bands are different. The presence of two different conformation of the same molecule in the ground state has lead to two close lying excited states, local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the dye. A CTstate involving the N,N-dimethylaniline group and the decahy droacridinedione chromophore as donor and acceptor, respectively, has been identified as the source of the long wavelength anomalous fluorescence. The experimental studies were supported by ab initio time dependent-density functional theory (TDDFT) calculations performed at the B3LYP/6-31G* level. The molecule possesses photoinduced electron transfer (PET) quenching in the LE state, which is confirmed by the fluorescence lifetime and fluorescent intensity enhancement in the presence of transition metal ions.  相似文献   

20.
Proflavine (3,6-diaminoacridine) shows fluorescence emission with lifetime, 4.6 ± 0.2 ns, in all the solvents irrespective of the solvent polarity. To understand this unusual photophysical property, investigations were carried out using steady state and time-resolved fluorescence spectroscopy in the pico- and femtosecond time domain. Molecular geometries in the ground and low-lying excited states of proflavine were examined by complete structural optimization using ab initio quantum chemical computations at HF/6-311++G** and CIS/6-311++G** levels. Time dependent density functional theory (TDDFT) calculations were performed to study the excitation energies in the low-lying excited states. The steady state absorption and emission spectral details of proflavine are found to be influenced by solvents. The femtosecond fluorescence decay of the proflavine in all the solvents follows triexponential function with two ultrafast decay components (τ(1) and τ(2)) in addition to the nanosecond component. The ultrafast decay component, τ(1), is attributed to the solvation dynamics of the particular solvent used. The second ultrafast decay component, τ(2), is found to vary from 50 to 215 ps depending upon the solvent. The amplitudes of the ultrafast decay components vary with the wavelength and show time dependent spectral shift in the emission maximum. The observation is interpreted that the time dependent spectral shift is not only due to solvation dynamics but also due to the existence of more than one emitting state of proflavine in the solvent used. Time resolved area normalized emission spectral (TRANES) analysis shows an isoemissive point, indicating the presence of two emitting states in homogeneous solution. Detailed femtosecond fluorescence decay analysis allows us to isolate the two independent emitting components of the close lying singlet states. The CIS and TDDFT calculations also support the existence of the close lying emitting states. The near constant lifetime observed for proflavine in different solvents is suggested to be due to the similar dipole moments of the ground and the evolved emitting singlet state of the dye from the Franck-Condon excited state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号