首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-(1,3-Thiazol-5(4H)-ylidene)amines via 1,3-Dipolar Cycloaddition of Azides and 1,3-Thiazol-5(4H)-thiones Organic azides 5 and 4,4-dimethyl-2-phenyl-1,3-thiazol-5(4H)-thione ( 2 ) in toluene at 90° react to give the corresponding N-(1,3-thiazol-5(4H)-ylidene)amines (= 1,3-thiazol-5(4H)-imines) 6 in good yield (Table). A reaction mechanism for the formation of these scarcely investigated thiazole derivatives is formulated in Scheme 3: 1,3-Dipolar azide cycloaddition onto the C?S group of 2 leads to the 1:1 adduct C . Successive elimination of N2 and S yields 6 , probably via an intermediate thiaziridine E .  相似文献   

2.
The reactions of (R)‐ and (S)‐4‐(1‐carboxyethoxy)benzoic acid (H2CBA) with 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligands afforded a pair of homochiral coordination polymers (CPs), namely, poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate], {[Zn(C10H8O5)(C14H14N4)]·H2O}n or {[Zn{(S)‐CBA}(1,3‐BMIB)]·H2O}n ( 1‐L ), and poly[[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] monohydrate] ( 1‐D ). Three kinds of helical chains exist in compounds 1‐D and 1‐L , which are constructed from ZnII atoms, 1,3‐BMIB ligands and/or CBA2? ligands. When the as‐synthesized crystals of 1‐L and 1‐D were further heated in the mother liquor or air, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(S)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)], [Zn(C10H8O5)(C14H14N4)]n or [Zn{(S)‐CBA}(1,3‐BMIB)]n ( 2‐L ), and poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene][μ‐(R)‐4‐(1‐carboxylatoethoxy)benzoato]zinc(II)] ( 2‐D ) were obtained, respectively. The single‐crystal structure analysis revealed that 2‐L and 2‐D only contained one type of helical chain formed by ZnII atoms and 1,3‐BMIB and CBA2? ligands, which indicated that the helical chains were reconstructed though solid‐to‐solid transformation. This result not only means the realization of helical transformation, but also gives a feasible strategy to build homochiral CPs.  相似文献   

3.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

4.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

5.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

6.
The design and synthesis of coordination polymers (CPs) have attracted much interest due to the intriguing diversity of their architectures and topologies. The functional solid catena‐poly[μ2‐aqua‐triaqua{μ4‐5‐[4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato}{μ3‐5‐[4‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato}dicobalt(II)], [Co2(C16H10O7)2(H2O)4]n or [Co2(HL)22‐H2O)(H2O)3]n, was synthesized successfully by self‐assembly of CoII ions with 5‐[(4‐carboxyphenoxy)methyl]isophthalic acid (H3L). The title compound was obtained under hydrothermal conditions and exhibits a twofold interpenetrated three‐dimensional skeleton with hms 3,5‐conn topology according to the cluster representation for valence‐bonded metal–organic frameworks (MOFs). It has been characterized by single‐crystal X‐ray diffraction, IR spectroscopy, powder X‐ray diffraction (PXRD), thermogravimetric analysis and susceptibility measurements. The antiferromagnetic coupling between adjacent CoII centres occurs via superexchange through the ligands.  相似文献   

7.
When tripeptides of type Axxt‐Aib‐Axx‐OH were coupled with amino acid methyl esters by means of commonly used coupling reagents, the formation of 1,3‐thiazol‐5(4H)‐imines and 1,3‐oxazol‐5(4H)‐imines was observed. With the aim of understanding which structure elements are required for this reaction, several model peptides have been prepared according to our recently described methodology, a modification of the ‘azirine/oxazolone method', followed by selective isomerization of the peptide thioamides. In addition, attempts to prepare peptides that contain more than one C=S group by the same methodology also led to the formation of 1,3‐thiazol‐5(4H)‐imine‐containing derivatives. An additional C=S group can be introduced into the peptide, when the 1,3‐thiazol‐5(4H)‐imines were treated with H2S, although mixtures of epimers were obtained. The structures of an endothiohexapeptide, two 1,3‐thiazol‐5(4H)‐ones, and two peptides containing a 1,3‐thiazol‐5(4H)‐imine moiety have been established by X‐ray crystal‐structure analysis.  相似文献   

8.
The title compound {alternatively, 3‐methyl‐2‐[oxido(oxo)hydrazono]‐2,3‐dihydro‐1,3‐thiazole}, C4H5N3O2S, was obtained by methyl­ation of N‐(2‐thia­zolyl)­nitr­amine. The molecule lies on a mirror plane and the thia­zole ring is planar, regular in shape and aromatic. The S atom participates in the aromatic sextet via an electron pair on the 3pz orbital. In the crystal, the mol­ecules are arranged in parallel layers, bound to each other by weak C—H?O and C—H?N hydrogen bonds and by S?O dipolar interactions, with an interlayer separation of 3.23 Å.  相似文献   

9.
Two phosphine ligands of [Pd(PPh3)4] were substituted by π(C?S) coordination of 4‐bromodithiobenzoic acid methyl ester resulting in complex 1 . The same ester, after alkylation, afforded the dicationic complex bis(μ‐methanethiolato)tetrakis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 2 ) from the same palladium source. A related thiolato‐bridged complex, bis(μ‐methanethiolato)bis(1‐methylpyridin‐2(1H)‐ylidene)bis(triphenylphosphine)dipalladium(2+) bis(tetrafluoroborate) ( 4 ) and the trinuclear cluster tris(μ‐methanethiolato)tris(triphenylphosphine)tripalladium(+)(3Pd? Pd) ( 5 ) resulted from treatment of a known cationic pyridinylidene complex with MeSLi. The double oxidative substitution reaction of [Pd(PPh3)4] with 1,5‐dichloro‐9,10‐anthraquinone afforded trans‐dichloro[μ‐(9,10‐dihydro‐9,10‐dioxoanthracene‐1,5‐diyl)]tetrakis(triphenylphosphine)dipalladium ( 6 ). Some of these complexes could be fully characterized by 1H‐, 13C‐, and 31P‐NMR spectroscopy, mass spectrometry, and elemental analysis. The crystal and molecular structures of all of them, and of trans‐bis(1,3‐dihydro‐1,3‐dimethyl‐2H‐imidazol‐2‐ylidene)diiodopalladium ( 3 ), were determined by single‐crystal X‐ray diffraction.  相似文献   

10.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

11.
Palladacyclic compounds [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] (R = Et, iPr, 2,6‐iPr2C6H3; N? N = bpy = 2,2′‐bipyridine, or 1,4‐(o,o′‐dialkylaryl)‐1,4‐diazabuta‐1,3‐dienes; [X]? = [BF4]? or [PF6]?) were synthesized from the dimers [{Pd(C6H4(C6H5C?O)C?N? R)(μ‐Cl)}2] and N? N ligands. Their interionic structure in CD2Cl2 was determined by means of 19F,1H‐HOESY experiments and compared with that in the solid state derived from X‐ray single‐crystal studies. [Pd(C6H4(C6H5C?O)C?N? R)(N? N)] [X] complexes were found to copolymerize CO and p‐methylstyrene affording syndiotactic or isotactic copolymers when bpy or 1,4‐(o,o′‐dimethylaryl)‐1,4‐diazabuta‐1,3‐dienes were used, respectively. The reactions with CO and p‐methylstyrene of the bpy derivatives were investigated. Two intermediates derived from a single and a double insertion of CO into the Pd? C bonds were isolated and completely characterized in solution.  相似文献   

12.
A series of new, 2‐substituted 3‐aryl‐8,9,10,11‐tetrahydro‐5‐methyl[1]benzothieno[3′,2′ : 5,6]pyrido[4,3‐d]pyrimidin‐4(3H)‐ones, compounds 5a – q , were designed and synthesized via the aza‐Wittig reaction as the key step. The iminophosphorane 1 reacted with phenyl isocyanate (or 4‐chlorophenyl isocyanate) to the carbodiimide 4 , which was cyclized to 5 upon addition of different amines, EtOH, or phenols in the presence of a catalytic amount of EtONa or K2CO3 (Schemes 1 and 2). The structures of compounds 5 were confirmed by IR, 1H‐ and 13C‐NMR, EI‐MS, elemental analyses, and, in the case of 5l , by single‐crystal X‐ray diffraction (Figure).  相似文献   

13.
The crystal structures of five new transition‐metal complexes synthesized using thiazole‐2‐carboxylic acid (2‐Htza), imidazole‐2‐carboxylic acid (2‐H2ima) or 1,3‐oxazole‐4‐carboxylic acid (4‐Hoxa), namely diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cobalt(II), [Co(C4H2NO2S)2(H2O)2], 1 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)nickel(II), [Ni(C4H2NO2S)2(H2O)2], 2 , diaquabis(thiazole‐2‐carboxylato‐κ2N,O)cadmium(II), [Cd(C4H2NO2S)2(H2O)2], 3 , diaquabis(1H‐imidazole‐2‐carboxylato‐κ2N3,O)cobalt(II), [Co(C4H2N2O2)2(H2O)2], 4 , and diaquabis(1,3‐oxazole‐4‐carboxylato‐κ2N,O4)cobalt(II), [Co(C4H2NO3)2(H2O)2], 5 , are reported. The influence of the nature of the heteroatom and the position of the carboxyl group in relation to the heteroatom on the self‐assembly process are discussed based upon Hirshfeld surface analysis and used to explain the observed differences in the single‐crystal structures and the supramolecular frameworks and topologies of complexes 1 – 5 .  相似文献   

14.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

15.
The syntheses and reactivity of the two N‐heterocyclic carbene (NHC)→ silylene complexes 2 and 4 have been investigated. The latter are easily accessible by reaction of the zwitterionic, N‐heterocyclic silylene LSi: 1 [L=Ar‐N‐C(=CH2)CH?C(Me)‐N‐Ar, Ar=2,6‐iPr2C6H3] with 1,3,4,5‐tetramethylimidazol‐2‐ylidene and 1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene, respectively. While compound 2 undergoes facile rearrangement above ?20 °C to give the unsymmetrical N‐heterocyclic silylcarbene 3 , the derivative 4 remains unchanged even after boiling in benzene. The remarkable reactivity of 3 and 4 towards cyclohexylisocyanide has been examined which leads in a unique series of C? H, Si? H, and C? N bond activations to the new triaminosilanes 5 and 6 , respectively. The novel compounds 3 , 4 , 5 , and 6 were fully characterized by 1H, 13C, and 29Si NMR spectroscopy, EI‐MS, elemental analysis, and single‐crystal X‐ray diffraction.  相似文献   

16.
In the coordination polymer, poly[[{μ‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole‐κ2N:N′}(μ‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ2O1:O3)zinc(II)] dimethylformamide monosolvate pentahydrate], {[Zn(C9H4O6)(C11H10N4)]·C3H7NO·5H2O}n, the ZnII ion is coordinated by two N atoms from two symmetry‐related 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐imidazole (bmi) ligands and two O atoms from two symmetry‐related 5‐carboxybenzene‐1,3‐dicarboxylate (Hbtc2−) ligands in a slightly distorted tetrahedral geometry. The ZnII ions are bridged by Hbtc2− and bmi ligands, leading to a 4‐connected two‐dimensional network with the topological notation (44.62). Adjacent layers are further connected by 12 kinds of hydrogen bonds and also by π–π interactions, resulting in a three‐dimensional supramolecular architecture in the solid state.  相似文献   

17.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

18.
When treated with LiNiPr2 (LDA) at ?78°, 1‐[(methylsulfanyl)methyl]‐2‐[(1Z,3E)‐4‐phenylbuta‐1,3‐dien‐1‐yl]benzene easily cyclized to form benzocycloheptenyl anion, which successively underwent intramolecular nucleophilic substitution to give a cyclopropanaphthalene. Similar LDA‐mediated cyclization also occurred for 4‐phenyl‐ or 4‐methyl‐substituted 1‐[2‐(methoxymethyl)phenyl]buta‐1,3‐dienes to furnish the corresponding benzocycloheptenes and cyclopropanaphthalenes. A 4‐tert‐butyl analog also underwent LDA‐mediated cyclization to give a benzocycloheptene, but not a cyclopropanaphthalene.  相似文献   

19.
5‐Oxo‐5H‐[1,3]thiazolo[3,2‐a]pyrimidine‐6‐carboxylic acid ( 4 ), and 6‐methylimidazo[2,1‐b]thiazole‐5‐carboxylic acid ( 17 ) were reacted with amines 6a‐i by the reaction with oxalyl chloride and N, N‐di methyl‐formamide as a catalyst into primary and secondary amide derivatives 7‐14 and 19‐22. From compound 24 N,N'‐disubstituted ureas 26, 27 and perhydroimidazo[1,5‐c]thiazole 29 derivatives of imidazo[2,1‐b]thiazole were prepared. By nmr analysis of compound 29 , the existence of two stereoisomers resulting from both optical, due to centre of chirality at C7′a, and conformational isomerism, due to restricted C5? N6′ bond rotation were proved.  相似文献   

20.
The reaction of the enolizable thioketone (1R,4R)‐thiocamphor (= (1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (R)‐2‐vinyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 gave the spirocyclic 1,3‐oxathiolane 3 with the vinyl group at C(4′), as well as the isomeric enesulfanyl alcohol 4 . In the case of SnCl4, an allylic alcohol 5 was obtained in low yield in addition to 3 and 4 (Scheme 2). Repetition of the reaction in the presence of ZnCl2 yielded two diastereoisomeric 4‐vinyl‐1,3‐oxathiolanes 3 and 7 together with an alcohol 4 , and a ‘1 : 2 adduct’ 8 (Scheme 3). The reaction of 1 and 2 in the presence of NaH afforded regioselectively two enesulfanyl alcohols 4 and 9 , which, in CDCl3, cyclized smoothly to give the corresponding spirocyclic 1,3‐oxathiolanes 3, 10 , and 11 , respectively (Scheme 4). In the presence of HCl, epimerization of 3 and 10 occurred to yield the corresponding epimers 7 and 11 , respectively (Scheme 5). The thio‐Claisen rearrangement of 4 in boiling mesitylene led to the allylic alcohol 12 , and the analogous [3,3]‐sigmatropic rearrangement of the intermediate xanthate 13 , which was formed by treatment of the allylic alcohol 9 with CS2 and MeI under basic conditions, occurred already at room temperature to give the dithiocarbonate 14 (Schemes 6 and 7). The presented results show that the Lewis acid‐catalyzed as well as the NaH‐induced addition of (R)‐vinyloxirane ( 2 ) to the enolizable thiocamphor ( 1 ) proceeds stereoselectively via an SN2‐type mechanism, but with different regioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号