首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three new serratane‐type triterpenoids, japonicumins A–C ( 1 – 3 ), as well as a unique, new C13 terpenoid, japonicumin D ( 4 ), were isolated from the dried whole plants of Lycopodium japonicum, together with the known compound lycoclavanol ( 5 ). Their structures were identified by extensive mass‐spectrometric and spectroscopic (especially 2D‐NMR) experiments. Compounds 1 – 5 exhibited no activity against human‐tumor A 549 cells.  相似文献   

2.
Two sets of o‐carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene‐containing carboranes 6 – 9 , was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1‐[(9,9‐dioctyl‐fluorene‐2‐yl)ethynyl]carborane ( 11 ) was synthesized by the reaction of 9,9‐dioctyl‐2‐ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4‐(chloromethyl)styrene or 9‐(chloromethyl)anthracene yielded compounds 12 and 13 . Members of the second set of derivatives, comprising anthracene‐containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1‐Me‐1,2‐C2B10H11, 1‐Ph‐1,2‐C2B10H11, and 1,2‐C2B10H12 with 1 or 2 equivalents of 9‐(chloromethyl)anthracene, respectively, to produce compounds 14 – 16 . In addition, 2 equivalents of the monolithium salts of 1‐Me‐1,2‐C2B10H11 (Me‐o‐carborane) and 1‐Ph‐1,2‐C2B10H11 (Ph‐o‐carborane) were reacted with 9,10‐bis(chloromethyl)anthracene to produce compounds 17 and 18 , respectively. Fluorene derivatives 6 – 9 exhibit moderate fluorescence quantum yields (32–44 %), whereas 11 – 13 , in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me‐o‐carborane moiety exhibit notably high fluorescence emissions, with ?F=82 and 94 %, whereas their Ph‐o‐carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc?Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene‐containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the substituent on the adjacent Cc.  相似文献   

3.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

4.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

5.
A new homologous series of 3‐alkyl‐5‐methoxy‐2‐methyl‐1,4‐benzoquinones ( 1 – 3 ), with chain lengths of C21 to C23, were isolated from the fruiting bodies of Daldinia concentrica, together with five known compounds. The molecular structures were established by spectroscopic methods.  相似文献   

6.
Reactions of [Cu(NCMe)4]+ with stoichiometric amount of diphosphine R2P–(C6H4)n–PR2, (R = NC4H4, n = 1; R = Ph, n = 1, 2, 3) or tri‐phosphine 1, 3, 5‐(PPh2–C6H4–)3–C6H3 ligands give the corresponding di‐ or trinuclear copper(I) acetonitrile‐phosphine complexes 1 – 5 . Substitution of the labile acetonitrile groups with chelating aromatic diimines – 2, 2′‐bipyridine (bpy), 1, 10‐phenanthroline (phen), 5, 6‐dimethyl‐1, 10‐phenanthroline (dmp), 5, 6‐dibromo‐1, 10‐phenanthroline (phenBr2) – gives the corresponding substituted compounds 6 – 16 . In all complexes 1 – 16 each central CuI atom has tetrahedral configuration completed with two N‐ and two P‐donor groups. The compounds obtained were characterized using elemental analysis, ESI‐MS, X‐ray crystallography, and NMR spectroscopy. All phosphine‐diimine compounds 6 – 16 are photoluminescent at room temperature both in dichloromethane solution and in solid state (λex = 385 nm). In CH2Cl2 solution the maxima of emission bands are found in a range 540–640 nm, and in solid in a similar range 538–620 nm. Emission of 6 – 16 is assigned to the triplet excited state dominated by the charge transfer transitions with contribution of the MLCT character.  相似文献   

7.
Ru‐Catalyzed olefin cross‐metathesis (CM) has been successfully applied to the synthesis of several phytyl derivatives ( 2b, 2d – f, 3b ) with a trisubstituted C?C bond, as useful intermediates for an alternative route to α‐tocopheryl acetate (vitamin E acetate; 1b ) (Scheme 1). Using the second‐generation Grubbs catalyst RuCl2(C21H26N2)(CHPh)PCy3 (Cy = cyclohexyl; 4a ) and Hoveyda–Grubbs catalyst RuCl2(C21H26N2){CH‐C6H4(O‐iPr)‐2} ( 4b ), the reactions were performed with various C‐allyl ( 5a – f, 7a,b ) and O‐allyl ( 8a – d ) derivatives of trimethylhydroquinone‐1‐acetate as substrates. 2,6,10,14‐Tetramethylpentadec‐1‐ene ( 6a ) and derivatives 6c – e of phytol ( 6b ) as well as phytal ( 6f ) were employed as olefin partners for the CM reactions (Schemes 2 and 5). The vitamin E precursors could be prepared in up to 83% isolated yield as (E/Z)‐mixtures.  相似文献   

8.
Various new substituted and fused pyridotriazepine analogues have been synthesized via different synthetic pathways. Among which are different heterocyclic compounds consisting of the pyridotriazepine backbone fused to different heterocyclic systems comprising either substituted pyrimidine nucleus such as compounds 3 – 9 or substituted 4‐aminopyridine nucleus such as compounds 10 – 16 . Besides, the tetrahydroquinoline derivative 17 , [1,2,4]triazolopyrimidine derivative 18 , thienodiazocine derivative 19 , dihydrobenzofuropyridine derivative 20 , and the substituted pyrrole derivative 21 were synthesized. In addition, different substituted pyridotriazepine derivatives as indicated in compounds 22 – 25 were designed and synthesized. Twenty‐five of the newly synthesized compounds were subjected to in vitro anticancer screening against mammalian colon carcinoma HCT‐116 cell line using Cisplatin as a reference drug. The anticancer activity screening results revealed that among the tested compounds, the tetrahydropyrido[1,2‐b]pyrimido[4,5‐e][1,2,4]triazepine derivative 4 substituted at C2 and C4 positions with S‐methyl and amino moieties, respectively, and the 2,4‐dithioxo analogue 9 and the 2‐thioxodipyrido[1,2‐b:2′,3′‐e][1,2,4]triazepine derivative 11 substituted at C3 and C4 with a cyano and amino moieties, respectively, exhibited moderate to strong anticancer activity against mammalian colon carcinoma HCT‐116 cell line.  相似文献   

9.
Phytochemical investigation of the rhizomes of Panax japonicus C. A. Meyer (Araliaceae) resulted in the isolation of two new dammarane‐type triterpenoid saponins, yesanchinoside R1 ( 1 ) and yesanchinoside R2 ( 2 ), together with one new natural product, 6′′′‐O‐acetylginsenoside Re ( 3 ). In addition, 25 known compounds, including 23 triterpenoid saponins, 4 – 26 , β‐sitosterol 3‐Oβ‐D ‐glucopyranoside ( 27 ), and ecdysterone ( 28 ), were also identified. The known saponins 12, 15 , and 18 – 22 were reported for the first time from the title plant. Their structures were elucidated on the basis of detailed spectroscopic analyses, including 1D‐ and 2D‐NMR techniques, as well as acidic hydrolysis.  相似文献   

10.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

11.
New complexes [(η6p‐cymene)Ru(C5H4N‐2‐CH=N–Ar)X]PF6 [X = Br ( 1 ), I ( 2 ); Ar = 4‐fluorophenyl ( a ), 4‐chlorophenyl ( b ), 4‐bromophenyl ( c ), 4‐iodophenyl ( d ), 2,5‐dichlorophenyl ( e )] were prepared, as well as 3a – 3e (X = Cl) and the new complexes [(η6‐arene)RuCl(N‐N)]PF6 (arene = C6H5OCH2CH2OH, N‐N = 2,2′‐bipyridine ( 4 ), 2,6‐(dimethylphenyl)‐pyridin‐2‐yl‐methylene amine ( 5 ), 2,6‐(diisopropylphenyl)‐pyridin‐2‐yl‐methylene amine ( 6 ); arene = p‐cymene, N‐N = 4‐(aminophenyl)‐pyridin‐2‐yl‐methylene amine ( 7 )]. X‐ray diffraction studies were performed for 1a , 1b , 1c , 1d , 2b , 5 , and 7 . Cytotoxicities of 1a – 1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco‐2) (IC50: 35.8–631.0 μM), breast adenocarcinoma (MCF7) (IC50: 36.3–128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC50: 60.6–439.8 μM), 3a – 3e were tested against HepG2 and Caco‐2, and 4 – 7 were tested against Caco‐2. 1 – 7 were tested against non‐cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5‐fluorouracil (5‐FU), but 3a – 3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC50 than 5‐FU. Complexes with X = Br or I had moderate activity against Caco‐2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a , 2b , 3a , and 7 were tested against antibacterial susceptible and resistant Gram‐negative and ‐positive bacteria. 1a , 2b , and 3a showed activity against methicillin‐resistant S. aureus (MIC = 31–2000 μg · mL–1).  相似文献   

12.
Two isostructural lanthanide metal‐organic frameworks [Ln‐MOFs, Ln = Tb ( 1 ), Eu ( 8 )] containing oxalic acid ligand with green, red luminescence were solvothermally synthesized. A series of Eu/Tb mixed MOFs ( 2 – 7 ), (C5H6N)2[EuxTb2–x(H2O)2(C2O4)4] · 2H2O, were designed and obtained, which displayed highly tunable luminescence color by adjusting the excitation wavelength. Complexes 1 – 8 were characterized by IR, elemental analysis, ICP, powder XRD, and TG measurements. The quantum yields of the complexes 1 – 8 range from 6.89 to 4.15 %, whereas the fluorescence lifetime of 1 – 8 varies between 1.12 and 0.87 ms. Therefore, with the increase of the molar ratio of Eu, the quantum yields and fluorescence lifetime of the complexes 1 – 8 gradually decrease.  相似文献   

13.
Eight new C21 steroidal glycosides, named wilfosides A–H ( 1 – 8 , resp.), along with one known compound wilfoside KIN ( 9 ), were isolated from the roots of Cynanchum wilfordii. The structures of the new glycosides were determined on the basis of spectroscopic analysis, including 1D‐ and 2D‐NMR, and ESI‐MS techniques, as well as by comparison of the spectral data with those of related compounds.  相似文献   

14.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

15.
A series of RuIV–alkylidenes based on unsymmetrical imidazolin‐2‐ylidenes, that is, [RuCl2{1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHPh)(pyridin)] (R=CH2Ph ( 5 ), Ph ( 6 ), ethyl ( 7 ), methyl ( 8 )), have been synthesized. These and the parent initiators [RuCl2(PCy3){1‐(2,4,6‐trimethylphenyl)‐3‐R‐4,5‐dihydro‐(3H)‐imidazol‐1‐ylidene}(CHC6H5)] (R=CH2C6H5 ( 1 ), C6H5 ( 2 ), ethyl ( 3 )) were used for the alternating copolymerization of norborn‐2‐ene (NBE) with cis‐cyclooctene (COE) and cyclopentene (CPE), respectively. Alternating copolymers, that is, poly(NBE‐alt‐COE)n and poly(NBE‐alt‐CPE)n containing up to 97 and 91 % alternating diads, respectively, were obtained. The copolymerization parameters of the alternating copolymerization of NBE with CPE under the action of initiators 1 – 3 and 5 – 8 were determined by using both a zero‐ and first‐order Markov model. Finally, kinetic investigations using initiators 1 – 3 , 6 , and 7 were carried out. These revealed that in contrast to the 2nd‐generation Grubbs‐type initiators 1 – 3 the corresponding pyridine derivatives 6 and 7 represent fast and quantitative initiating systems. Hydrogenation of poly(NBE‐alt‐COE)n yielded a fully saturated, hydrocarbon‐based polymer. Its backbone can formally be derived by 1‐olefin polymerization of CPE (1,3‐insertion) followed by five ethylene units and thus serves as an excellent model compound for 1‐olefin polymerization‐derived copolymers.  相似文献   

16.
The systematic synthesis and photophysical, electrochemical and computational studies on an extended series of triphenylamine‐[C?C‐1,4‐C6H2(OR)2]n‐C?C‐diphenyl‐1,3,4‐oxadiazole dyad molecules (the OR groups are at 2,5‐positions of the para‐phenylene ring and R=C6H13; n=0–5, compounds 1 , 2 , 3 , 4 and 5 , respectively) are reported. Related molecules with identical end groups, triphenylamine‐C?C‐1,4‐C6H2(OR)2‐C?C‐triphenylamine (R=C6H13; 6 ) and diphenyl‐1,3,4‐oxadiazole‐[C?C‐C6H2(OR)2]2‐C?C‐diphenyl‐1,3,4‐oxadiazole (R=C6H13; 7 ) were also studied. These D–B–A 1 – 5 , D–B–D 6 and A–B–A 7 (D=electron donor, B=bridge, A=electron acceptor) systems were synthesized using palladium‐catalysed cross‐coupling reactions of new p‐phenyleneethynylene building blocks. Steady‐state emission studies on the dyads 1 – 5 reveal a complicated behavior of the emission that is strongly medium dependent. In low polarity solvents the emission is characterized by a sharp high‐energy peak attributed to fluorescence from a locally excited (LE) state. In more polar environments the LE state is effectively quenched by transfer into an intramolecular charge‐transfer (ICT) state. The medium dependence is also observed in the quantum yields (QYs) which are high in cyclohexane and low in acetonitrile, thus also indicating charge‐transfer character. Low‐temperature emission spectra for 2 – 5 in dichloromethane and diethyl ether also reveal two distinct excited states, namely the LE state and the conventional ICT state, depending on solvent and temperature. Hybrid DFT calculations for 1 – 7 establish that the OPE bridge is involved in both frontier orbitals where the bridge character increases as the bridge length increases. Computed TD‐DFT data on 1 – 5 assign the emission maxima in cyclohexane as LE transitions. Each time‐resolved emission measurement on 2 – 7 in cyclohexane and diethyl ether reveals a wavelength dependent bi‐exponential decay of the emission with a fast component in the 5–61 ps range on blue detection and a slower approximately 1 ns phase, independent of detection wavelength. The fast component is attributed to LE fluorescence and this emission component is rate limited and quenched by transfer into an ICT state. The fast LE fluorescence component varies systematically with conjugation length for the series of D–B–A dyads 2 – 5 . An attenuation factor β of 0.15 Å?1 was determined in accordance with an ICT superexchange mechanism.  相似文献   

17.
The reaction of 1‐naphthylamine with two equivalents of chlorodiphenylphosphine in the presence of triethylamine gave the ligand C10H7‐1‐N(PPh2)2 ( 1 ). Reaction of 1 with PdCl2(CH3CN)2 or PtCl2(cod) (1:1 molar ratio) afforded the complexes cis‐[PdCl2{C10H7‐1‐N(PPh2)2}] ( 2 ) and cis‐[PtCl2{C10H7‐1‐N(PPh2)2}] ( 3 ), respectively. Compounds 1 – 3 were identified and characterized by multinuclear NMR (1H, 13C, 31P NMR) and IR spectroscopy. Crystal structure determinations of complexes 2 and 3 were carried out.  相似文献   

18.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   

19.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

20.
Toxicity, antitumour, platinum distribution, hepatotoxicity and histology data are presented for a series of ferrocenylamines: [(η‐C5H4(CH2)nNH2)FeCp] (n = 0,1) ( 1 , 2 ); [(η‐C5H4CH2NHPh)FeCp] ( 3 ); [(η‐C5H4CH2NMe2)FeCp] ( 4 ); {[η‐C5H4CH(Me)NMe2]FeCp} ( 5 ); [η‐C5H4CH2NMe2)2Fe] ( 6 ); {[1,2η‐C5H3(CHMeNMe2)(PPh2)]FeCp} ( 7 ); {[1,2η‐C5H3(CHMeNMe2)(PPh2)]Fe[η‐C5H4PPh2]} ( 8 ); and their complexes cis‐PtCl2L2 ( 9 ); trans ‐ Pt(L)(dmso)X2 ( 10 ); [σ ‐ (L)Pt(dmso)X] ( 11 , 12 ) {σ‐(L)[Pt(dmso)X]2} ( 13 ); [σ‐(L)PtP(OPh)3Cl] ( 14 ) (L = ferrocenylamine). The toxicity order is 1 – 3 ≫ 4 – 8 for the ferrocenylamines; the lower toxicity of tertiary amines may be due to protonation in vivo. Pt(II) complexes all show increased toxicity over the ligand. Liver, not kidney, damage is the norm from i.p. injection of 1 – 14 and detailed platinum distribution, blood serum and histology studies with 9 and 11 show that the platinum distribution does not correlate with liver dysfunction. Complexes 9 – 14 , but not 1 – 8 , were active against P‐388 mouse leukaemia tumour and cisplatin‐resistant sarcoma, but inactive against L‐1210 mouse leukaemia and B‐16 melanoma. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号