首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

2.
Different solvents including cyclohexane, dichloromethane, chloroform, toluene, 1-octanol, and methyl isobutyl ketone (MIBK) have been evaluated in extracting copper(II) from nitrate medium by salicylideneaniline. Extracted species differs from solvent to solvent: CuL2 in cyclohexane, toluene, 1-octanol, and methyl isobutyl ketone. However, in dichloromethane or chloroform, there are two complexes of the type CuL2 and CuL2(HL). The extraction constants and percentage of extraction (%E) are calculated for different solvents. Solvent played an important role in recovering copper(II) from the aqueous solution, thus affecting the extraction equilibrium and extraction efficiency. The nonpolar solvent showed better performance than the polar solvent. The maximum extraction efficiency was 85.75% at pH?=?4.5, which was from cyclohexane.  相似文献   

3.
New dinuclear Rh(I)–Phosphines of the types [Rh(µ‐azi)(CO)(L)]2 ( 1,3 – 7 ) and [Rh(µ‐azi)(L)]2 ( 8 ) with pendant polar groups, and a chealated mononuclear compound [Rh(azi‐H)(CO)(L)] ( 2 ) (where azi = 7‐azaindolate, L = polar phosphine) were isolated from the reaction of [Rh(µ‐Cl)(CO)2]2 with 7‐azaindolate followed by some polar mono‐ and bis‐phosphines ( L 1 – L 8 ). A relationship between Δδ31P‐NMR and ν(CO) values was considered to define the impact of polar‐groups on σ‐donor properties of the phosphines. These compounds were evaluated as catalyst precursors in the hydroformylation of 1‐hexene and 1‐dodecene both in mono‐ and biphasic aqueous organic systems. While the biphasic hydroformylations (water + toluene) gave exclusively the aldehydes, the monophasic one (aqueous ethanol) showed propensity to form both aldehydes and alcohols. The influence of bimetallic cooperative effects, and σ‐donor and hydrophilic properties of the phosphines with pendant polar‐groups in enhancing the yields and selectivity of hydroformylation products was emphasized. In addition, when strong σ‐donor phosphine was used, the π‐acceptor nature of pyridine ring of 7‐azaindolate spacer was found to be a considerable factor in facilitating the facile cleavage of CO group during hydroformylation and in supplementing the cooperative effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and fast flow method for the trace level determination of p‐toluidine, 2‐methyl‐5‐nitroaniline, and 2,4‐dinitroaniline in aqueous samples is reported. These amino/nitroaromatics are related to trinitrotoluene (TNT) and appear during the degradation process of the explosive. The chemical principles of ion‐pair formation and liquid‐liquid extraction are applied: In aqueous acidic medium, the protonated analyte [HA]+ makes an ion‐pair with the tetrachloroaurate(III) ion, followed by on‐line ion‐pair extraction into the dichloromethane carrier used. After membrane separation, the CH2Cl2 containing the ion‐pair, [HA]+[AuCl4], is mixed with the reversed micellar luminescent reagent of luminol (in 0.3 M Na2CO3) prepared from cetyl‐trimethylammonium chloride in CH2Cl2‐cyclohexane and the [AuCl4‐luminol chemiluminescence (CL) output is recorded. The detection limits (S/N> 3) are: p‐toluidine, 1.0 × 10−4M; 2‐methyl‐5‐nitroaniline, 1.0 × 10−7 M; 2,4‐dinitroaniline, 1.0 × 10−7 M, while the calibration curves are linear between 1.0 × 10−4 — 1.0 × 10−2 M for all the compounds. Although spectral studies indicated the formation and extraction of a very small amount of the ion‐pair species, the reversed micellar‐mediated CL detection system provides an alternative procedure for the determination of degradation products of the explosive TNT in environmental aqueous samples.  相似文献   

5.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
Mo(CO)6 was reacted with the Schiff base ligand obtained by condensation reaction of 2‐acetyl‐ or benzoylpyridine with poly(propylene glycol)bis(2‐aminopropyl ether) to obtain polymeric, dinuclear metal tetracarbonyl compounds. The long‐chain Schiff base complexes are highly soluble even in non‐polar solvents such as petroleum ether, diethyl ether and n‐hexane. These complexes, as free‐radical initiators, afforded methyl methacrylate polymerization in chlorinated solvents. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Ethene homopolymerization and copolymerization with 1‐hexene were catalyzed by methyl‐substituted cyclopentadienyl (Cp) zirconium dichlorides, (Rn C5H5−n)2ZrCl2 (Rn = H, Me, 1,2‐Me2, 1,3‐Me2, 1,2,3‐Me3, 1,2,4‐Me3, Me4, or Me5), and methylaluminoxane. The polymers were characterized with Fourier transform infrared, nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry techniques. Generally, an increasing number of methyl substituents on the Cp ligand results in lower 1‐hexene incorporation in the copolymer. The two catalysts with split methyl substitution (Rn = 1,3‐Me2 and Rn = 1,2,4‐Me3) show a higher comonomer response than their disubstituted and trisubstituted counterparts (Rn = 1,2‐Me2 and Rn = 1,2,3‐Me3). They even incorporate more 1‐hexene than Rn = H and Rn = Me. These findings are qualitatively in agreement with the results of a theoretical study based on density functional calculations. The presence of comonomer does not influence the termination reactions after the insertion of ethene. There is more frequent termination after each hexene insertion with increasing comonomer incorporation except for the two catalysts with split methyl substituents. The termination probability per inserted comonomer is highest for the less substituted catalysts. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3161–3172, 2000  相似文献   

8.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

9.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

10.
The lithium salts of the Me3Si‐ as well as Me3Si‐ and Me2SiF‐substituted Cyclotrisilazanes I and II react with tert‐butylacylchloride under ring contraction and formation of the cyclodisilazane‐silylester, Me3SiN(SiMe2–N)2SiMe2–O–CO–CMe3 ( 1 ). The lithium salt of the fluorodi‐methylsilyl‐substituted cyclotrisilazan III forms with benzoylchloride primarily in the analogous reaction the carboxy‐silyl‐amide, Me2SiF(N–SiMe2)2SiMe2–NH–CO–C6H5+ ( 2 ), which can be converted with III and benzoylchloride into the cyclodisilazane‐silylester, Me2SiF(NSiMe2)2SiMe2–O–CO–C6H5, ( 3 ). A silylester substituted six‐membered disila‐oxadiazine ( 4 ) is the result of the reaction of the lithiated cyclotrisilazane, (Me2SiNH)2, (Me2SiNLi) with tert‐butyl‐acylchloride. The reaction includes anionic ring contraction and can be rationilized by a process analogous to keto‐enol‐tautomerism. Dilithiated octamethyl‐cyclotetrasilazane, (Me2SiNHMe2SiNLi)2, reacts with tert‐butyl‐acylchloride or benzoylchloride in a molar ratio 1:2 to yield symmetrically acylestersubstituted cyclodisilazanes, (RCO–O–SiMe2–NSiMe2)2, R = C6H5 ( 5 ), CMe3 ( 6 ). The reaction mechanisms are discussed and the crystal structures of 2 and 6 are reported.  相似文献   

11.
Room temperature ionic liquids are regarded as “Green solvents” for their nonvolatile and thermally stable properties. They are employed to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, a water immiscible room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent for liquid/liquid extraction of copper ions. Metal chelators, including dithizone, 8‐hydroxyquinoline, and 1‐(2‐pyridylazo)‐2‐naphthol, were employed to form neutral metal‐chelate complexes with copper ions so that copper ions were extracted from aqueous solution into [C4mim][PF6]. The parameters that affect the extraction of copper ions with this biphasic system were investigated. The extraction behavior in this novel biphasic system is shown to be consistent with that of traditional solvents. For example, the extraction with this biphasic system is strongly pH dependent. So, the extraction efficiency of coppers ion from an aqueous phase can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation and preconcentraction of copper ions can be accomplished by controlling the pH value of the extraction system. It appears that the use of ionic liquid as an alternate solvent system in liquid/liquid extraction of copper ions is very promising.  相似文献   

12.
The Cu0‐mediated single electron transfer‐living radical polymerization of acrylamide and N,N‐dimethyl‐N‐methacryloyloxyethyl‐N‐sulfobutyl ammonium in aqueous at 25 °C using 2‐chloropropionamide as initiator with Cu0 powder/tris‐(2‐dimethylamino ethyl)amine (Me6‐TREN) as catalyst system is studied. The results showed the characteristic of the “living” polymerization that were the Mn of polymers increased linearly with monomer conversion and the ln([M]0/[M]) increased linearly with time too, meanwhile the narrow molecular of weight distributions were found at most cases. Because of the high rate constant of propagation and bimolecular termination of the acrylamide, the external addition of CuCl2 is required to mediate deactivation the early stage of polymerization. In addition, the disproportionation constant of CuIX/L in H2O is higher than in other solvents and the coordination of amino group and CuII takes place easily, so the isopropanol or N,N‐dimethylformamide is added to control the polymerization. High conversions were achieved within short time and the polymers prepared showed good antipolyelectrolyte properties in inorganic salts solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

14.
金瑛  孙晓莉  姜茹  张生勇 《中国化学》2005,23(3):326-329
以价廉的3,6-二氯哒嗪和奎宁为原料,通过两步反应即可得到一种可重复使用的金鸡纳生物碱衍生物配体。以NMO为辅助氧化剂在丙酮-水体系中,将此配体用于七种烯烃的不对称二羟化反应。反应结束后,用乙醚将产品从催化体系中萃取出来,得到80%~93%的产率和51%~99%的对映体过量值。以反式-二苯乙烯为底物进行催化体系的重复使用试验。循环使用十次,得到88%~92%的产率和>99%的对映体过量值。  相似文献   

15.
This paper describes the first examples of ABA‐ and AB‐type block copolymerizations of a nonpolar monomer, in this case ethylene, with polar monomers, such as methyl methacrylate (MMA), ϵ‐caprolactone (CL), and 2,2‐dimethyltrimethylene carbonate (DTC), initiated by the unique catalytic function of rare earth metal complexes [Sm(II) and Ln(III) (Ln = Y, Sm)] as initiators. The Sm(II) species conducts the ABA‐type triblock copolymerization, leading to poly(MMA‐co‐ethylene‐co‐MMA), poly(CL‐co‐ethylene‐co‐CL), or poly(DTC‐co‐ethylene‐co‐DTC) by the efficient catalysis of racemic Me2Si(C5H2‐2‐Me3Si‐4‐tBu)2Sm(THF)2 ( 1 ) or meso Me2Si(Me2SiOSiMe2)(C5H2‐3‐tBu)Sm(THF) ( 2b ). The resulting block copolymers are completely insoluble in THF and CHCl3, but the homopolymers of MMA, CL, and DTC are freely soluble in these solvents. TEM profiles provide direct evidence for the block copolymerizations, where the spheric morphology of homogeneously dispersed polar polymers was observed. Ln(III) species, such as racemic Me2Si(C5H2‐2‐Me3Si‐4‐tBuMe2Si)YH ( 5 ) and Me2Si(C5H2‐2‐Me3Si‐4‐tBu)SmH ( 6 ), afford AB‐type block copolymers between ethylene and MMA or CL, whose TEM images reveal the homogeneous dispersion of poly(MMA) or poly(CL) units in the polyethylene region. The ABA‐ and AB‐type block copolymers demonstrate high break stress and high tensile modulus as compared with their corresponding blended polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4095–4109, 2000  相似文献   

16.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

17.
Alternative Ligands. XXXVI. Novel Rhodium(I) Complexes with Donor/Acceptor Chelating Ligands In order to generate metal base/Lewis‐acid interactions in rhodium(I) phosphane complexes the binuclear complex [Rh(CO)2Cl]2 was reacted in benzene with dipod ligands of the type R2M′(OCH2PMe2)x(CH2CH2PMe2)2–x (R = F, Me; M′ = Si, Ge; x = 0–2) using the Ziegler dilution principle with the aim to produce mononuclear compounds in which with formation of five‐membered chelate rings in principle Rh → M′ contacts are possible. The reactions of ligands 1 – 7 (Table 1) with [Rh(CO)2Cl]2 proceed under CO elimination and, in spite of large turnovers, lead to a variety of products 8 – 14 (Table 1), in case of 11 , 13 and 14 accompanied by degradation of the corresponding ligands. Intact ligands are present in the 16‐membered rings of the binuclear complexes 8 – 10 and 12 , for which, due to the molecular structure, Rh → M′ interactions can be excluded. In the reaction of Me2Si(OCH2PMe2)2 ( 4 ) with [Rh(CO)2Cl]2 the unusual binuclear system 11 with a central Rh2O2 four‐membered ring and two RhO(SiMe2OCH2PMe2) six‐membered rings is formed. Small amounts of the mononuclear compounds Rh(CO)Cl(Me2PCH2OH)2 ( 13 ) and Rh(CO)Cl3(Me2PCH2OH)2 ( 14 ), respectively, are obtained in crystalline form from the reaction mixtures of [Rh(CO)2Cl]2 with Me2Ge(OCH2PMe2)(CH2CH2PMe2) ( 6 ) or Me2Ge(OCH2PMe2)2 ( 7 ). The new complexes were characterized by analytic (C, H), spectroscopic (NMR, IR, MS) and, except for 12 , by single crystal structural analyses.  相似文献   

18.
Random copolymerizations of L ‐lactide with (R)‐, (S)‐, or rac‐1‐methyltrimethylene carbonate with bis(pentamethylcyclopentadienyl) samarium‐methyl tetrahydrofuranate [(C5Me5)2SmMe(THF)] as a novel initiator provided high molecular weight polymers with low polydispersities. Biodegradation of the resulting polymers with tricine and {N‐[tris(hydroxymethyl)methyl]‐2‐aminoethane sulfonic acid (TES) buffers as well as activated sludge showed only a small weight loss, whereas the polymer with proteinase K revealed high biodegradability independent of the optical activity of 1‐methyltrimethylene carbonate. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3916–3927, 2001  相似文献   

19.
The methylation of the uncoordinated nitrogen atom of the cyclometalated triruthenium cluster complexes [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐Mepyr)(CO)10] ( 1 ; 2‐MepyrH=2‐methylpyrimidine) and [Ru3(μ‐H)(μ‐κ2N1,C6‐4‐Mepyr)(CO)10] ( 9 ; 4‐MepyrH=4‐methylpyrimidine) gives two similar cationic complexes, [Ru3(μ‐H)(μ‐κ2N1,C6‐2,3‐Me2pyr)(CO)10]+( 2 +) and [Ru3(μ‐H)(μ‐κ2N1,C6‐3,4‐Me2pyr)(CO)10]+ ( 9 +), respectively, whose heterocyclic ligands belong to a novel type of N‐heterocyclic carbenes (NHCs) that have the Ccarbene atom in 6‐position of a pyrimidine framework. The position of the C‐methyl group in the ligands of complexes 2 + (on C2) and 9 + (on C4) is of key importance for the outcome of their reactions with K[N(SiMe3)2], K‐selectride, and cobaltocene. Although these reagents react with 2 + to give [Ru3(μ‐H)(μ‐κ2N1,C6‐2‐CH2‐3‐Mepyr)(CO)10] ( 3 ; deprotonation of the C2‐Me group), [Ru3(μ‐H)(μ3‐κ3N1,C5,C6‐4‐H‐2,3‐Me2pyr)(CO)9] ( 4 ; hydride addition at C4), and [Ru6(μ‐H)26‐κ6N1,N1′,C5,C5′,C6,C6′‐4,4′‐bis(2,3‐Me2pyr)}(CO)18] ( 5 ; reductive dimerization at C4), respectively, similar reactions with 9 + have only allowed the isolation of [Ru3(μ‐H)(μ3‐κ2N1,C6‐2‐H‐3,4‐Me2pyr)(CO)9] ( 11 ; hydride addition at C2). Compounds 3 and 11 also contain novel six‐membered ring NHC ligands. Theoretical studies have established that the deprotonation of 2 + and 9 + (that have ligand‐based LUMOs) are charge‐controlled processes and that both the composition of the LUMOs of these cationic complexes and the steric protection of their ligand ring atoms govern the regioselectivity of their nucleophilic addition and reduction reactions.  相似文献   

20.
Methylation is one of the important posttranslational modifications of biological systems. At the metabolite level, the methylation process is expected to convert bioactive compounds such as amino acids, fatty acids, lipids, sugars, and other organic acids into their methylated forms. A few of the methylated amino acids are identified and have been proved as potential biomarkers for several metabolic disorders by using mass spectrometry–based metabolomics workstation. As it is possible to encounter all the N‐methyl forms of the proteinogenic amino acids in plant/biological systems, it is essential to have analytical data of all N‐methyl amino acids for their detection and identification. In earlier studies, we have reported the ESI‐MS/MS data of all methylated proteinogenic amino acids, except that of mono‐N‐methyl amino acids. In this study, the N‐methyl amino acids of all the amino acids ( 1 ‐ 21 ; including one isomeric pair) were synthesized and characterized by ESI‐MS/MS, LC/MS/MS, and HRMS. These data could be useful for detection and identification of N‐methyl amino acids in biological systems for future metabolomics studies. The MS/MS spectra of [M + H]+ ions of most N‐methyl amino acids showed respective immonium ions by the loss of (H2O, CO). The other most common product ions detected were [MH‐(NH2CH3]+, [MH‐(RH)]+ (where R = side chain group) ions, and the selective structure indicative product ions due to side chain and N‐methyl group. The isomeric/isobaric N‐methyl amino acids could easily be differentiated by their distinct MS/MS spectra. Further, the MS/MS of immonium ions inferred side chain structure and methyl group on α‐nitrogen of the N‐methyl amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号