首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new composite electrode has been fabricated based on coating multi‐walled carbon nanotubes (MWCNTs) and n‐octylpyridinum hexafluorophosphate (OPPF6) ionic liquid composite on a glassy carbon (GC) electrode (OPPF6‐MWCNTs/GCE). This electrode shows very attractive electrochemical performances for electrooxidation of risperidone (RIS) compared to conventional electrodes using carbon and mineral oil, notably improved sensitivity and stability. The oxidation peak potentials in cyclic voltammogram of RIS on the OPPF6‐MWCNTs/GCE was occurred around 230 mV vs. SCE at Britton–Robinson (B–R) buffer (pH 4.0) at scan rate of 100 mV s?1. The electrochemical parameters such as diffusion coefficient (D), charge transfer coefficient (α) and the electron transfer rate constant (k/s) were determined using cyclic voltammetry. Under the optimized conditions, the peak current was linear to risperidone concentration over the concentration range of 10–200 nM with sensitivity of 0.016 μA/nM?1 using differential pulse voltammetry. The detection limit was 6.54 nM (S/N = 3). The electrode also displayed good selectivity and repeatability. In the presence of clozapine (CLZ) the response of RIS kept almost unchanged. Thus this electrode could find application in the determination of RIS in some real samples. The analytical performance of the OPPF6‐MWCNTs/GCE was demonstrated for the determination of RIS in human serum and pharmaceutical samples.  相似文献   

2.
Single‐walled carbon nanotube (SWNT) and room temperature ionic liquid (i.e., 1‐butyl‐3‐methylimidazolium hexaflourophosphate, BMIMPF6) were used to fabricate paste modified glassy electrode (GCE). It was found that the electrode showed sensitive voltammetric response to xanthine (Xt). The detection limit was 2.0×10?9 M and the linear range was 5.0×10?9 to 5.0×10?6 M. The electrode also displayed good selectivity and repeatability. In the presence of uric acid (UA) and hypoxanthine (Hx) the response of Xt kept almost unchanged. Thus this electrode could find application in the determination of Xt in some real samples. The analytical performance of the BMIMPF6‐SWNT/GCE was demonstrated for the determination of Xt in human serum and urine samples.  相似文献   

3.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

4.
In the present work, the electrochemical oxidation of nitrite on carbon ceramic electrode (CCE) modified with multi‐walled carbon nanotubes (MWCNTs) was investigated. The modified electrode exhibited catalytic activity toward the electrooxidation of nitrite. Experimental parameters such as solution pH, scan rate, concentration of nitrite and nanotubes amount were studied. It was shown nitrite can be determined by differential pulse voltammetry (DPV) and hydrodynamic amperometry (HA) using the modified electrode. Under the optimized conditions the calibration plots are linear in the concentration ranges of 15‐220 and 50‐3000 μM with limit of detections of 4.74 and 35.8 μM for DPV and HA, respectively. The modified electrode was successfully applied for analysis of nitrite in spinach sample. The results were favorbly compared to those obtained by UV‐Visible spectrophotometric method. The results of the analysis suggest that the proposed method has promise for the routine determination of nitrite in the examined products.  相似文献   

5.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

6.
《Electroanalysis》2005,17(7):630-634
Myoglobin (Myb) of horse heart is incorporated on multi‐walled carbon nanotubes (MWNTs) and immobilized at a glassy carbon (GC) electrode surface. Its electrochemical behavior and enzyme activity are characterized by employing electrochemical methods. The results indicate that MWNTs can obviously promote the direct electron transfer between Myb and electrode, and that the Myb on MWNTs behaves as an enzyme‐like activity towards the electrochemical reduction of nitric oxide (NO). Accordingly, an unmediated NO biosensor is constructed. Experimental results reveal that the peak current related to NO is linearly proportional to its concentration in the range of 2.0×10?7–4.0×10?5 mol/L. The detection limit is estimated to be 8.0×10?8 mol/L. Considering a relative standard deviation of 2.1% in seven independent determinations of 1.0×10?5 mol/L NO, this biosensor shows a good reproducibility. The biosensor based on Myb/MWNTs modified electrode can be used for the rapid determination of trace NO in aqueous solution with a good stability, nice selectivity and easy construction.  相似文献   

7.
A paste electrode (SWNT&RTIL PE) has been prepared using carboxylic group‐functionalized short single‐walled carbon nanotubes (SWNTs) mixed with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6, one kind of room temperature ionic liquid, RTIL). Its electrochemical behavior was investigated by cyclic voltammetry and electrochemical impedance spectroscopy in comparison with the paste electrode using mineral oil as a binder. Results highlighted the advantages of the paste electrode: not only higher conductivity, but also lower potential separation (ΔEp), higher peak current (ip) and better reversibility towards dopamine (DA), methylene blue (MB) and K3[Fe(CN)6]. The SWNT&RTIL PE could be used to detect the number of guanine bases and adenine bases contents in per mol oligonucleotides according to the current response in the range of 0.05–2.0 nM. Based on the current response of guanine bases, oligonucleotides could be detected sensitively in the B–R buffer solution with a detection limit of 9.9 pM. The heterogeneous electron transfer rate constant (ks) of guanine bases contents in the oligonucleotides was investigated and its value was 0.90 s?1. In essence the SWNT&RTIL PE showed high sensitivity, reliability, stability and reproducibility for the detection of DNA.  相似文献   

8.
制备了多壁碳纳米管-离子液体修饰碳糊电极(MWCNTs-ILs/CPE),并以对乙酰氨基酚(PA)为电催化媒介,研究了谷胱甘肽(GSH)在该修饰电极上的电化学行为。结果表明,GSH能明显增强PA在MWCNTs-ILs/CPE上的电化学响应,且示差脉冲伏安法(DPV)的氧化峰电流与其浓度在7.50×10-7~1.00×10-4 mol/L范围内呈良好线性关系,检测限(S/N=3)为1.65×10-7 mol/L。该方法简单、快速、灵敏,用于含GSH药物的测定,加标回收率为99.5%~101.8%。  相似文献   

9.
In this article we report on the fabrication of a carbon ionic liquid electrode (CILE) by using a room temperature ionic liquid of 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) as binder. It was further modified by single‐walled carbon nanotubes (SWCNTs) to get a SWCNTs modified CILE denoted as SWCNTs/CILE. The redox protein of hemoglobin (Hb) was further immobilized on the surface of SWCNTs/CILE with the help of Nafion film. UV‐vis and FT‐IR spectra indicated that the immobilized Hb retained its native conformation in the composite film. The direct electrochemistry of Hb on the SWCNTs/CILE was carefully studied in pH 7.0 phosphate buffer solution (PBS). Cyclic voltammetric results indicated that a pair of well‐defined and quasireversible voltammetric peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential (E°') at ?0.306 V (vs. SCE). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the apparent heterogeneous electron transfer rate constant (ks) were calculated as 0.34, 0.989 and 0.538 s?1, respectively. The fabricated Hb modified electrode showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) in the concentration range from 20.0 to 150.0 mmol/L with the detection limit of 10.0 mmol/L (3σ).  相似文献   

10.
A gold surface modified with a self‐assembled monolayer of 11‐amino‐1‐undecanethiol (AUT) was used for the covalent immobilization of oxidized single‐walled carbon nanotubes (SWNTs). The as‐described SWNTs‐modified substrate was subsequently used to attach single‐stranded deoxyribonucleic acid (ssDNA) used as a substrate for DNA hybridization. Electrochemical impedance spectroscopy measurements were performed to follow the DNA hybridization process by using the redox couple [Fe(CN)6]3−/4− as a marker ion. Specifically, changes in charge transfer resistance obtained from the Nyquist plots were used as the sensing parameter of DNA hybridization. The substrate sensitivity towards changes in target DNA concentration, its selectivity toward different DNA sequences and its reusability are successfully demonstrated in this report.  相似文献   

11.
A novel technique utilizing the adsorptive potential of immobilized multi‐walled carbon nanotubes (I‐MWCNT) in hollow fiber liquid‐phase microextraction (HF‐LPME) was developed for the determination of diuretics in urine. In this study, the potential of carbon nanotubes as a sorbent for three‐phase liquid‐phase microextraction of diuretics from urine samples was evaluated. Analysis was performed using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). A novel method was applied to detect acetazolamide (AAA), chlorothiazide (CTA), hydrochlorothiazide (HCT), hydroflumethiazide (HFT), clopamide (CA), trichlormethiazide (TCM), althiazide (AT) and bendroflumethiazide (BFT) in urine. Two‐step extractions using different times and temperatures for each step were adopted. Parameters influencing the extraction efficiency, including the extraction solvent, sample pH, salt concentration, extraction time and extraction temperature were systematically optimized. Under the resulting optimal extraction conditions, this method showed good linearity over an analytes concentration range of 1 to 1000 ng/mL, high extraction repeatability with relative standard deviations of less than 6%, and low detection limits (0.09 to 0.51 ng/mL). The application of the methods to the determination of diuretics in real samples was tested by analyzing urine samples of patient.  相似文献   

12.
《Electroanalysis》2006,18(24):2481-2485
A generic approach for the detection of electroactive species in potential ranges that would normally be inhibited due to the stripping of the electrocatalytic material is presented. We demonstrate, via the example of the electrochemical oxidation of hydrazine, that palladium nanoparticle (< 1 nm) decorated bamboo multi‐walled carbon nanotubes exhibit a metastability such that they allow the sensing of hydrazine in the pH range where palladium metal would normally be voltammetrically stripped (oxidized) from the surface of convectional electrodes.  相似文献   

13.
本文构建了一种新型多壁碳纳米管/壳聚糖/离子液体修饰电极.研究了支持电解质、酸度和扫描速度等因素对对苯二酚伏安响应的影响,获得了较优的实验条件.在0.1 mol/L pH=6.8磷酸盐缓冲溶液中测定对苯二酚,其氧化峰电流与对苯二酚浓度在8.0×10~(-7)~1.0×10~(-4) mol/L范围内呈良好的线性关系,检出限为7.9×10~(-8) mol/L.该电极对对苯二酚有较高的选择性,可直接测量对苯二酚,结果满意.  相似文献   

14.
A new carbon nanotubes modified electrode (poly‐Nq‐MWCNTs/GCE) was fabricated by electropolymerization of 1,2‐naphththoquinone to the surface of multi‐walled carbon nanotubes modified electrode by casting method. The morphology of the nanocomposite was characterized by scanning electron microscopy. Cyclic voltammetry and chronoamperometry were applied to investigate the electrochemical properties of the poly‐Nq‐MWCNTs nanocomposite modified electrode. The result of electrochemical experiments showed that such modified electrode had a favorable catalytic ability to oxidation of β‐nicotinamide adenine dinucleotide (NADH). The resulted sensor was sensitiveness to NADH and achieved 95β of the steady‐state current within 5s. Furthermore, the anodic peak current was linear to the concentration of NADH for the range from 1.0 μM to 0.14 mM. The linear equation was: I(μA) = 0.3987 + 0.1035c (μmol/L), the correlation coefficient r = 0.9962, the detect limit is down to 1 × 10?7 M (S/N = 3) and the sensitivity is 0.1035 μA/mmol. The well catalytic activity of the sensor was ascribed to the synergistic effect role played by MWCNTs and poly‐Nq. Moreover, the based sensor possesses good stability and reproducibility.  相似文献   

15.
A supramolecular hybrid is prepared by the supramolecular surface modification of single‐walled carbon nanotube (SWCNT) with cationic β‐cyclodextrin‐tethered ruthenium complexes through a spacer molecule that contains both an adamantane and a pyrene moiety. By employing the supramolecular hybrid, spatially controllable DNA condensation along the SWCNT skeleton is achieved by anchoring cationic ruthenium complexes on the surface. Furthermore, because of the unique physiological properties of SWCNTs, the cationic supramolecular hybrid can be used as a nonviral gene delivery system with the ruthenium complexes as a fluorescent probe to monitor uptake of DNA by cells.  相似文献   

16.
Based on single‐walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE/SWCNTs), a novel method was presented for the determination of L ‐tyrosine. The GCE/SWCNTs exhibited remarkable catalytic and enhanced effects on the oxidation of L ‐tyrosine. In 0.10 mol/L citric acid‐sodium citrate buffer solution, the oxidation potential of L ‐tyrosine shifted negatively from +1.23 V at bare GCE to +0.76 V at GCE/SWCNTs. Under the optimized experimental conditions, the linear range of the modified electrode to the concentration of L ‐tyrosine was 5.0×10?6–2.0×10?5 mol/L (R1=0.9952) and 2.7×10?5–2.6×10?4 mol/L (R2=0.9998) with a detection limit of 9.3×10?8 mol/L. The kinetic parameters such as α (charge transfer coefficient) and D (diffusion coefficient) were evaluated to be 0.66, 9.82×10?5 cm2 s?1, respectively. And the electrochemical mechanism of L ‐tyrosine was also discussed.  相似文献   

17.
《Electroanalysis》2005,17(1):15-27
The rapid development in nanomaterials and nanotechnologies has provided many new opportunities for electroanalysis. We review our recent results on the fabrication and electroanalytical applications of nanoelectrode arrays based on vertically aligned multi‐walled carbon nanotubes (MWCNTs). A bottom‐up approach is demonstrated, which is compatible with Si microfabrication processes. MWCNTs are encapsulated in SiO2 matrix leaving only the very end exposed to form inlaid nanoelectrode arrays. The electrical and electrochemical properties have been characterized, showing well‐defined quasireversible nanoelectrode behavior. Ultrasensitive detection of small redox molecules in bulk solutions as well as immobilized at the MWCNT ends is demonstrated. A label‐free affinity‐based DNA sensor has shown extremely high sensitivity approaching that of fluorescence techniques. This platform can be integrated with microelectronics and microfluidics for fully automated microchips.  相似文献   

18.
The electrochemical sensor was developed for determination of methadone (MTD) using multi‐walled carbon nanotubes (MWCNT) modified pencil graphite electrode (MWCNT‐PGE). It was found that the oxidation peak current of MTD at the MWCNT‐PGE was greatly improved compared with that of the bare‐PGE. At the MWCNT‐PGE, well‐defined anodic peak of MTD was observed at about 0.7 V (in pH 7 solution). The influence of several parameters on the determination of MTD was investigated. At optimum experimental conditions, differential pulse voltammetry (DPV) was used for determination of MTD, which exhibited a linear calibration graph of Ip versus MTD concentration in the range of 0.1–15 µM with a correlation coefficient of 0.9992. The calculated detection limit for S/N = 3 was 87 nM. It has been shown that the peaks obtained for oxidation of ascorbic acid (AA), uric acid (UA) and MTD in their mixture could be well resolved by differential pulse voltammetry, permitting us to develop a sensitive and selective electrochemical sensor for determination of MTD in the presence of AA and UA. Finally, MWCNT‐PGE was used for determination of MTD in biological samples, such as human serum and urine, using the standard addition procedure and the results were quite promising.  相似文献   

19.
Multi‐walled carbon nanotubes (MWCNTs) were compared with poly(3‐octylthiophene) (POT) as ion‐to‐electron transducer in all‐solid‐state potassium ion‐selective electrodes with valinomycin‐based ion‐selective membranes. MWCNTs and POT were mixed with the other components of the potassium ion‐selective membrane cocktail (valinomycin, KTpClPB, o‐NPOE, PVC, THF) which was then applied on a glassy carbon (GC) substrate to prepare single‐piece ion‐selective electrodes (SPISEs). Results from potentiometric and impedance measurements showed that the MWCNT‐based electrodes have a more reproducuible standard potential and a lower overall impedance than the electrodes based on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox sensitivity.  相似文献   

20.
《Electroanalysis》2004,16(17):1444-1450
The multi‐walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc‐NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O2 reduction. The reduction peak potential of O2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co‐exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MWNTs/CoTMPyP)n prepared by layer‐by‐layer method were investigated, and the results showed that the peak current of O2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号