共查询到3条相似文献,搜索用时 15 毫秒
1.
A surface plasmon resonance (SPR)-based biosensor was developed for simple diagnosis of severe acute respiratory syndrome (SARS) using a protein created by genetically fusing gold binding polypeptides (GBPs) to a SARS coronaviral surface antigen (SCVme). The GBP domain of the fusion protein serves as an anchoring component onto the gold surface, exploiting the gold binding affinity of the domain, whereas the SCVme domain is a recognition element for anti-SCVme antibody, the target analyte in this study. SPR analysis indicated the fusion protein simply and strongly self-immobilized onto the gold surface, through GBP, without surface chemical modification, offering a stable and specific sensing platform for anti-SCVme detection. AFM and SPR imaging analyses demonstrated that anti-SCVme specifically bound to the fusion protein immobilized onto the gold-micropatterned chip, implying that appropriate orientation of bound fusion protein by GBP resulted in optimal exposure of the SCVme domain to the assay solution, resulting in efficient capture of anti-SCVme antibody. The best packing density of the fusion protein onto the SPR chip was achieved at the concentration of 10 μg mL−1; this density showed the highest detection response (906 RU) for anti-SCVme. The fusion protein-coated SPR chip at the best packing density had a lower limit of detection of 200 ng mL−1 anti-SCVme within 10 min and also allowed selective detection of anti-SCVme with significantly low responses for non-specific mouse IgG at all tested concentrations. The fusion protein provides a simple and effective method for construction of SPR sensing platforms permitting sensitive and selective detection of anti-SCVme antibody. 相似文献
2.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)导致的新冠肺炎(COVID-19)迅速蔓延全球,给全球公共卫生系统带来了挑战。由于逆转录-定量聚合酶链反应(RT-qPCR)和抗原测试的普遍适用性和灵敏度较差,并且具有不同突变的SARS-CoV-2变体持续的出现,给疫情防控带来了更大的挑战,因此,高灵敏度、无需设备并且能够区分SARS-CoV-2变体的诊断方法亟须发展。基于成簇的规则间隔短回文重复序列(CRISPR)的诊断对设备要求低,具有可编程性、灵敏性和易用性,已经发展出多种核酸检测工具用于传染病的诊断,其在临床上具有巨大的应用潜力。文章聚焦于近期发表的基于CRISPR实现SARS-CoV-2检测和变体区分的最新技术,总结其特点并对其发展进行了展望。 相似文献
3.
Type I and type II pneumocytes are two forms of epithelial cells found lining the alveoli in the lungs. Type II pneumocytes exclusively secrete ‘pulmonary surfactants,’ a lipoprotein complex made up of 90% lipids (mainly phospholipids) and 10% surfactant proteins (SP-A, SP-B, SP-C, and SP-D). Respiratory diseases such as influenza, severe acute respiratory syndrome coronavirus infection, and severe acute respiratory syndrome coronavirus 2 infection are reported to preferentially attack type II pneumocytes of the lungs. After viral invasion, consequent viral propagation and destruction of type II pneumocytes causes altered surfactant production, resulting in dyspnea and acute respiratory distress syndrome in patients with coronavirus disease 2019. Exogenous animal-derived or synthetic pulmonary surfactant therapy has already shown immense success in the treatment of neonatal respiratory distress syndrome and has the potential to contribute efficiently toward repair of damaged alveoli and preventing severe acute respiratory syndrome coronavirus 2–associated respiratory failure. Furthermore, early detection of surfactant collectins (SP-A and SP-D) in the circulatory system can be a significant clinical marker for disease prognosis in the near future. 相似文献