共查询到16条相似文献,搜索用时 46 毫秒
1.
一种基于可见-近红外光谱快速鉴别茶叶品种的新方法 总被引:37,自引:11,他引:26
提出了一种用可见-近红外光谱技术快速无损鉴别茶叶品种的新方法。应用可见-近红外光谱仪测定5个品种茶叶的光谱曲线,用主成分分析法对不同品种茶叶进行聚类分析并获得茶叶的可见-近红外光谱数据的主成分,再结合人工神经网络技术建立模型进行品种鉴别。主成分分析表明,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类茶叶具有较好的聚类作用,可以定性分析茶叶种类。把主成分分析得到的前6个主成分作为神经网络的输入,茶叶品种值作为神经网络的输出,通过5个茶叶品种共125个样本的训练和学习,建立了茶叶品种鉴别的3层BP人工神经网络模型,对未知的25个样本进行鉴别,品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为茶叶的品种快速鉴别提供了一种新方法。 相似文献
2.
基于近红外光谱技术和人工神经网络的玉米品种鉴别方法研究 总被引:8,自引:0,他引:8
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法。在3 800~10 000 cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散 射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别。主成分分析表明,前8个主成分的累积贡献率达到99.602%。以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型。每个品种 各取30粒共120个样本用于建模,10粒共40个样本用于预测。模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%。实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法。 相似文献
3.
基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究 总被引:2,自引:0,他引:2
结合遗传算法与线性签别分析(LDA)提出了一种玉米品种的快速鉴别方法.该方法是一种基于近红外光谱的新方法,通过采集玉米种子(实验共37个种类)的近红外光谱数据,使用遗传算法进行特征光谱波段的选择,使用线性鉴别分析的方法提取光谱特征并分类.结果表明,遗传算法能有效地剔除光谱噪声波段,并提高 LDA 的泛化能力.同时,为简化运算,剔除了大量冗余数据,结合遗传算法选择的特征谱区,使参与鉴别的数据维数从2 075降到了233.对测试集1的300个样本的平均正确识别率与平均正确拒识率均达到99.30%,其中73.33%的玉米品种的正确识别率达到了100%;对测试集2(均为未参加训练品种的样本)的175个样本的平均正确拒识率达到99.65%.与常用的 PCA 等方法相比,运算时间更短,正确率更高. 相似文献
4.
提出了一种采用近红外光谱快速鉴别酱油品牌的新方法,对不同品牌的酱油建立相应的指纹模型。对市场上8种典型品牌的酱油,通过近红外透射获取光谱曲线,选择了其中噪声较小的7 625~3 684 cm-1共3 942个波段作为建模分析数据。为了减少原始数据量,提高数据处理效率,对原始数据进行了多项式平滑拟合等预处理,采取主成分分析法,得到能反映酱油99.99%光谱信息的8个主成分。由这8个主成分得到的得分图,可以区分其中某几个品牌,但是不能做到区分全部品种,因此选取了人工神经网络进行了进一步信息提取与种类判别。将8个主成分作为人工神经网络的输入,对应的酱油品牌作为输出,通过不断调整参数,建立了最优的BP神经网络。8个品牌共242个样本作为建模学习样本,每个品牌各10个共80个样本作为检验样本。结果表明,在0.98的置信区间里取得了98.75%的识别正确率,为不同等级和品牌的酱油鉴别提供了一种新的方法。 相似文献
5.
不同植物源的蜂胶物质组成不同,其生理和药理活性也存在着一定的差异。目前主要是根据蜂胶中物质组成及其含量的不同来鉴别蜂胶植物源,存在着一些局限性。因此,建立一种快速、准确鉴别蜂胶植物源的方法具有重要的意义。以三种不同植物源的蜂胶(杨树型蜂胶、桦树型蜂胶和橡树型蜂胶)为研究对象,利用傅里叶变换近红外光谱仪对蜂胶的无水乙醇溶液进行光谱扫描,采用主成分分析结合马氏距离判别法和典型判别分析分别建立蜂胶品种的判别模型并对其性能进行检验。结果表明: 在经过光谱预处理和主成分分析后,得到最佳的光谱建模波段为4 500~12 000 cm-1,最佳的光谱预处理方法为一阶导数+Savitzky-Golay(7)平滑;主成分分析结合马氏距离判别法建立的判别模型校正集和检验集的判别准确率分别为93.62%和82.61%;典型判别分析建立的判别模型的判别准确率为91.4%,交叉检验的判别准确率为88.6%。由此可知,主成分分析结合马氏距离判别法与典型判别分析对蜂胶样品的分类效果均较好。近红外光谱技术结合化学计量学方法应用于蜂胶植物源的快速、准确鉴别具有一定的可行性和实用性。 相似文献
6.
近红外光谱技术鉴别海面溢油 总被引:13,自引:3,他引:10
为快速了解和掌握海面溢油的种类,以便采取应急措施,提出了近红外光谱技术结合模式识别鉴别海面溢油的方法。自行配制了56个汽油、柴油、润滑油的模拟海水样品,用有机溶剂萃取出海水中的溢油后记录其近红外光谱,将原始光谱进行多元散射校正(MSC)和Norris一阶导数平滑预处理后,在主成分分析(PCA)提取不同种类溢油样品特征的基础上引入马氏距离建立溢油样品的识别模型。研究了光谱预处理对溢油鉴别的影响;探讨了马氏距离阈值的确定。结果表明,主成分分析可将原始数据压缩而马氏距离判别可给出离群点的阈值,本文建立的校正模型能正确判别浓度在0.4 μL·mL-1以上的溢油类别,为近红外光谱结合化学计量学方法建立校正模型进行海面实际溢油样品的分类提供了思路。 相似文献
7.
玉米品种近红外光谱的特征分析与鉴别方法 总被引:1,自引:0,他引:1
以玉米种子的4 000~12 000 cm-1波段的漫反射近红外光谱为研究对象,提出了一种鉴别玉米品种的新方法。采用主成分分析法(PCA)来研究数据特征,发现近红外光谱在特征空间中具有显著的长条状分布特征,为此我们研究了改变样本点在PCA空间中的分布对品种鉴别的影响,并提出了归一化主成分分析(NPCA)的特征提取算法,同时还根据近红外光谱的数据分布特点提出了一种主方向仿生模式识别的分类算法,进一步提高了鉴别正确率。鉴别模型对第一测试集的平均正确识别率达到了97.67%,平均正确拒识率达到了98.40%,30个品种中的13个达到了100%的正确识别率;对第二测试集的平均正确拒识率达到了98.90%,有11个品种达到了100%的正确拒识率,具有较高的鉴别准确度。 相似文献
8.
基于可见-近红外光谱的可乐品牌鉴别方法研究 总被引:6,自引:5,他引:1
提出了一种采用可见-近红外光谱分析技术快速鉴别可乐品牌的新方法。采用美国ASD公司的便携式光谱仪对三种不同品牌的可乐进行光谱分析,各获取55个样本数据。将样本随机分成150个建模样本和15个预测样本,采用平均平滑法和标准归一化方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据。将建模样本的主成分数据作为BP网络的输入变量,可乐品牌作为输出变量,建立三层人工神经网络鉴别模型,并用模型对15个预测样本进行预测。结果表明,预测准确率为100%,实现了可乐品牌快速、准确的鉴别。 相似文献
9.
基于可见-近红外反射光谱技术的葡萄品种鉴别方法的研究 总被引:2,自引:0,他引:2
提出一种利用可见-近红外反射光谱技术快速无损鉴别葡萄品种的新方法.采用主成分分析法对三个葡萄品种的光谱进行聚类分析.结果表明, 黑提葡萄能够被区分.进一步采用人工神经网络技术对马奶子和木拉格两种葡萄进行品种鉴别.以前10个主成分作为神经网络的输入, 品种类型作为神经网络的输出, 建立三层BP神经网络模型.结果显示, 这两个品种的识别准确率达到98.28 %, 结果优于簇类独立软模式(SIMCA).同时提出葡萄品种鉴别的四个敏感波段: 452、493、542和668 nm.基于敏感波段光谱的BP神经网络预测准确率为97.41%.说明采用可见-近红外光谱分析技术结合主成分分析和人工神经网络的方法能够快速无损鉴别葡萄的品种, 为葡萄品种的鉴别提供了一种新方法. 相似文献
10.
近红外光谱结合主成分分析鉴别不同产地的南丰蜜桔 总被引:2,自引:0,他引:2
采用近红外光谱结合主成分分析(PCA)建立不同产地南丰蜜桔鉴别模型,实现不同产地南丰蜜桔的快速鉴别。分别研究一个果园内不同位置的蜜桔,洽湾、市山和白舍等南丰县三个不同乡镇的南丰蜜桔,福建邵武、广西柳城和江西南丰等三个不同省份的南丰蜜桔之间的差异,蜜桔保存时间对主成分分析模型的影响。结果表明同一个果园内不同位置的蜜桔不存在明显差别,不同产地的蜜桔有很好的分类效果,蜜桔的短时间保存对近红外光谱的主成分分析模型不会产生明显影响。不同的光谱预处理方法对主成分分析模型产生较大影响,多元散射校正(MSC)结合二阶导预处理得到的主成分分析投影具有最佳的分类效果。该研究可为南丰蜜桔的产地鉴别提供一种参考方法。 相似文献
11.
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 总被引:49,自引:17,他引:32
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 相似文献
12.
红木的近红外光谱分析 总被引:1,自引:0,他引:1
红木珍贵、种类多,大多数人对红木种类及真伪难以或无法鉴别.利用近红外光谱技术对国家标准中八类红木的近红外光谱进行分析,研究结果表明:(1)近红外光谱与红木色度学参数(L*,a*和b*)之间存在非常高的相关性,预测值与实测红木L*,a*和b*值的相关性分别达到0.988,0.991和0.993; (2)利用化学计量学中的主成分分析(PCA)方法可以将八类红木清楚地区分成八个相应的类别,利用三个主成份信息绘制的三维PCA得分图比二维图更能直观地展现八类红木的区别.研究结果说明应用近红外光谱技术识别红木类别具有可行性,这为开发红木的鉴定或识别提供新的方法和研究思路. 相似文献
13.
基于可见/近红外光谱技术的番茄叶片灰霉病检测研究 总被引:3,自引:1,他引:2
利用可见/近红外光谱技术对感染灰霉病的番茄叶片感染程度进行了检测。提出了主成分分析结合BP神经网络的数据处理方法。采用主成分分析进行数据的降维,减少了计算量,提高了建模精度。通过主成分分析中的载荷值,定性地分析了不同波段对病害程度检测的重要性。将得到的最主要的几个主成分输入BP神经网络进行建模,预测结果显示,当主成分数为8,隐含层结点数为11的时候,病害程度的检测模型对未知样本预测的相关系数达到0.930,SEP为0.068 7,模型具有良好的检测效果。说明基于光谱技术和化学计量学方法的灰霉病检测模型具有很好的检测能力,为光谱技术应用于病害检测提供了新的方法。 相似文献
14.
近红外光谱技术快速鉴别地沟油与食用植物油的研究 总被引:1,自引:0,他引:1
地沟油检测是我国食品安全最为关注的话题之一,它给人们的生活健康带来了极大的危害。国内现有的检测手段也仅停留在定性检测水平上,只能确定地沟油的有无,还难以进行定量检测。本实验利用近红外光谱技术与光纤传感技术相结合的新方法对勾兑混合油中地沟油的含量进行了定量分析。将煎炸老油与九三大豆油按照一定的体积比进行勾兑,共计50个样本,采集其近红外透射光谱,分别采用偏最小二乘法(PLS)和BP人工神经网络建立了煎炸老油含量的定量分析模型,校正集决定系数分别为0.908和0.934,验证集决定系数分别为0.961和0.952,均方估计残差(RMSEC)为0.184和0.136,预测均方根误差(RMSEP)都为0.111 6,符合应用要求,同时还结合主成分分析法(PCA)对煎炸老油与食用植物油进行了鉴别,识别准确率为100%。实验研究证明近红外光谱技术不仅可以准确快速的定性分析地沟油, 还能定量的检测地沟油的含量,在油脂的检测方面具有很大的应用前景。 相似文献
15.
SIMCA法判别分析木材生物腐朽的研究 总被引:7,自引:1,他引:6
木材是一种生物质材料,容易受到各种微生物的危害,生物腐朽可以迅速导致木材结构的破坏,因此,对木材生物腐朽的快速、准确地检测或鉴定具有重要意义。近几年来,近红外光谱和SIMCA方法正被用于识别或检测食品、药品和农产品等研究中,因此,本研究尝试利用近红外光谱结合SIMCA方法来检测木材的生物腐朽。研究结果表明,应用近红外光谱和SIMCA方法能有效地判别木材的生物腐朽类型,通过培训集样本建立的基于PCA分析的SIMCA判别模型对未腐朽、白腐和褐腐三种类型样本进行回判,判别准确率分别为100%, 82.5%和100%;而对未知腐朽类型的样本(包括未腐朽、白腐和褐腐样本),判别准确率分别为100%, 85%和100%;SIMCA方法对未腐朽和褐腐类型的判别准确率均达到100%,但对白腐样本都有错判,造成这种错判的主要原因可能是由于样本包括的信息不够丰富以及腐朽初期白腐和褐腐试样的性质差异太小等。 相似文献
16.
基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究 总被引:4,自引:0,他引:4
研究了人工神经网络在激光诱导击穿光谱(LIBS)塑料分类识别方面的应用.选用七种常见的塑料作为实验样品,获得每种样品的170组LIBS光谱数据,利用主成分分析获得前五个主成分的得分矩阵.用每种塑料样品的130组光谱数据的主成分得分矩阵作为训练集,建立反向传播(BP)人工神经网络模型.将其余40组主成分得分作为测试数据输入训练好的模型进行分类识别,其识别准确度达到97.5%.实验结果表明,通过采用主成分分析与BP人工神经网络相结合的方法,可以很好地进行塑料激光诱导击穿光谱的分类识别,对塑料的回收利用有重要价值. 相似文献