共查询到15条相似文献,搜索用时 66 毫秒
1.
一种基于可见-近红外光谱快速鉴别茶叶品种的新方法 总被引:26,自引:11,他引:26
提出了一种用可见-近红外光谱技术快速无损鉴别茶叶品种的新方法。应用可见-近红外光谱仪测定5个品种茶叶的光谱曲线,用主成分分析法对不同品种茶叶进行聚类分析并获得茶叶的可见-近红外光谱数据的主成分,再结合人工神经网络技术建立模型进行品种鉴别。主成分分析表明,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类茶叶具有较好的聚类作用,可以定性分析茶叶种类。把主成分分析得到的前6个主成分作为神经网络的输入,茶叶品种值作为神经网络的输出,通过5个茶叶品种共125个样本的训练和学习,建立了茶叶品种鉴别的3层BP人工神经网络模型,对未知的25个样本进行鉴别,品种识别准确率达到100%。说明本文提出的方法具有很好的分类和鉴别作用,为茶叶的品种快速鉴别提供了一种新方法。 相似文献
2.
基于近红外光谱技术和人工神经网络的玉米品种鉴别方法研究 总被引:8,自引:0,他引:8
提出了一种采用近红外光谱技术结合人工神经网络对玉米品种进行鉴别的方法。在3 800~10 000 cm-1(波长1 000~2 632 nm)范围内采集四种玉米单粒完整籽粒的近红外漫反射光谱,经Savitky-Golay平滑和多重散 射校正预处理后,对数据进行主成分分析,再结合人工神经网络技术进行品种鉴别。主成分分析表明,前8个主成分的累积贡献率达到99.602%。以前8个主成分作为网络输入,品种类型作为输出,建立三层LMBP神经网络模型。每个品种 各取30粒共120个样本用于建模,10粒共40个样本用于预测。模型对建模集120个样本鉴别率为100%,对预测集40个样本的鉴别率为95%。实验结果说明该方法能快速无损地鉴别玉米品种,为玉米的品种鉴别提供了一种新方法。 相似文献
3.
基于遗传算法与线性鉴别的近红外光谱玉米品种鉴别研究 总被引:2,自引:0,他引:2
结合遗传算法与线性签别分析(LDA)提出了一种玉米品种的快速鉴别方法.该方法是一种基于近红外光谱的新方法,通过采集玉米种子(实验共37个种类)的近红外光谱数据,使用遗传算法进行特征光谱波段的选择,使用线性鉴别分析的方法提取光谱特征并分类.结果表明,遗传算法能有效地剔除光谱噪声波段,并提高 LDA 的泛化能力.同时,为简化运算,剔除了大量冗余数据,结合遗传算法选择的特征谱区,使参与鉴别的数据维数从2 075降到了233.对测试集1的300个样本的平均正确识别率与平均正确拒识率均达到99.30%,其中73.33%的玉米品种的正确识别率达到了100%;对测试集2(均为未参加训练品种的样本)的175个样本的平均正确拒识率达到99.65%.与常用的 PCA 等方法相比,运算时间更短,正确率更高. 相似文献
4.
应用近红外光谱技术快速检别酱油品牌的研究 总被引:1,自引:0,他引:1
提出了一种采用近红外光谱快速鉴别酱油品牌的新方法,对不同品牌的酱油建立相应的指纹模型。对市场上8种典型品牌的酱油,通过近红外透射获取光谱曲线,选择了其中噪声较小的7 625~3 684 cm-1共3 942个波段作为建模分析数据。为了减少原始数据量,提高数据处理效率,对原始数据进行了多项式平滑拟合等预处理,采取主成分分析法,得到能反映酱油99.99%光谱信息的8个主成分。由这8个主成分得到的得分图,可以区分其中某几个品牌,但是不能做到区分全部品种,因此选取了人工神经网络进行了进一步信息提取与种类判别。将8个主成分作为人工神经网络的输入,对应的酱油品牌作为输出,通过不断调整参数,建立了最优的BP神经网络。8个品牌共242个样本作为建模学习样本,每个品牌各10个共80个样本作为检验样本。结果表明,在0.98的置信区间里取得了98.75%的识别正确率,为不同等级和品牌的酱油鉴别提供了一种新的方法。 相似文献
5.
不同植物源的蜂胶物质组成不同,其生理和药理活性也存在着一定的差异。目前主要是根据蜂胶中物质组成及其含量的不同来鉴别蜂胶植物源,存在着一些局限性。因此,建立一种快速、准确鉴别蜂胶植物源的方法具有重要的意义。以三种不同植物源的蜂胶(杨树型蜂胶、桦树型蜂胶和橡树型蜂胶)为研究对象,利用傅里叶变换近红外光谱仪对蜂胶的无水乙醇溶液进行光谱扫描,采用主成分分析结合马氏距离判别法和典型判别分析分别建立蜂胶品种的判别模型并对其性能进行检验。结果表明: 在经过光谱预处理和主成分分析后,得到最佳的光谱建模波段为4 500~12 000 cm-1,最佳的光谱预处理方法为一阶导数+Savitzky-Golay(7)平滑;主成分分析结合马氏距离判别法建立的判别模型校正集和检验集的判别准确率分别为93.62%和82.61%;典型判别分析建立的判别模型的判别准确率为91.4%,交叉检验的判别准确率为88.6%。由此可知,主成分分析结合马氏距离判别法与典型判别分析对蜂胶样品的分类效果均较好。近红外光谱技术结合化学计量学方法应用于蜂胶植物源的快速、准确鉴别具有一定的可行性和实用性。 相似文献
6.
玉米品种近红外光谱的特征分析与鉴别方法 总被引:1,自引:0,他引:1
以玉米种子的4 000~12 000 cm-1波段的漫反射近红外光谱为研究对象,提出了一种鉴别玉米品种的新方法。采用主成分分析法(PCA)来研究数据特征,发现近红外光谱在特征空间中具有显著的长条状分布特征,为此我们研究了改变样本点在PCA空间中的分布对品种鉴别的影响,并提出了归一化主成分分析(NPCA)的特征提取算法,同时还根据近红外光谱的数据分布特点提出了一种主方向仿生模式识别的分类算法,进一步提高了鉴别正确率。鉴别模型对第一测试集的平均正确识别率达到了97.67%,平均正确拒识率达到了98.40%,30个品种中的13个达到了100%的正确识别率;对第二测试集的平均正确拒识率达到了98.90%,有11个品种达到了100%的正确拒识率,具有较高的鉴别准确度。 相似文献
7.
近红外光谱技术鉴别海面溢油 总被引:10,自引:3,他引:10
为快速了解和掌握海面溢油的种类,以便采取应急措施,提出了近红外光谱技术结合模式识别鉴别海面溢油的方法。自行配制了56个汽油、柴油、润滑油的模拟海水样品,用有机溶剂萃取出海水中的溢油后记录其近红外光谱,将原始光谱进行多元散射校正(MSC)和Norris一阶导数平滑预处理后,在主成分分析(PCA)提取不同种类溢油样品特征的基础上引入马氏距离建立溢油样品的识别模型。研究了光谱预处理对溢油鉴别的影响;探讨了马氏距离阈值的确定。结果表明,主成分分析可将原始数据压缩而马氏距离判别可给出离群点的阈值,本文建立的校正模型能正确判别浓度在0.4 μL·mL-1以上的溢油类别,为近红外光谱结合化学计量学方法建立校正模型进行海面实际溢油样品的分类提供了思路。 相似文献
8.
基于可见-近红外光谱的可乐品牌鉴别方法研究 总被引:6,自引:5,他引:1
提出了一种采用可见-近红外光谱分析技术快速鉴别可乐品牌的新方法。采用美国ASD公司的便携式光谱仪对三种不同品牌的可乐进行光谱分析,各获取55个样本数据。将样本随机分成150个建模样本和15个预测样本,采用平均平滑法和标准归一化方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据。将建模样本的主成分数据作为BP网络的输入变量,可乐品牌作为输出变量,建立三层人工神经网络鉴别模型,并用模型对15个预测样本进行预测。结果表明,预测准确率为100%,实现了可乐品牌快速、准确的鉴别。 相似文献
9.
基于可见-近红外反射光谱技术的葡萄品种鉴别方法的研究 总被引:2,自引:0,他引:2
提出一种利用可见-近红外反射光谱技术快速无损鉴别葡萄品种的新方法.采用主成分分析法对三个葡萄品种的光谱进行聚类分析.结果表明, 黑提葡萄能够被区分.进一步采用人工神经网络技术对马奶子和木拉格两种葡萄进行品种鉴别.以前10个主成分作为神经网络的输入, 品种类型作为神经网络的输出, 建立三层BP神经网络模型.结果显示, 这两个品种的识别准确率达到98.28 %, 结果优于簇类独立软模式(SIMCA).同时提出葡萄品种鉴别的四个敏感波段: 452、493、542和668 nm.基于敏感波段光谱的BP神经网络预测准确率为97.41%.说明采用可见-近红外光谱分析技术结合主成分分析和人工神经网络的方法能够快速无损鉴别葡萄的品种, 为葡萄品种的鉴别提供了一种新方法. 相似文献
10.
基于主成分分析和神经网络的近红外光谱苹果品种鉴别方法研究 总被引:32,自引:17,他引:32
提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,首先用主成分分析法对苹果品种进行聚类分析并获取苹果的近红外指纹图谱,再结合人工神经网络技术进行品种鉴别。主成分分析表明,主成分1和主成分2的累积可信度已达98%,以主成分1和2对所有建模样本的得分值做出的得分图,对不同种类苹果具有很好的聚类作用。利用主成分分析得到的载荷图可以得到对于苹果品种敏感的特征波段,用特征波段图谱作为神经网络的输入建立三层BP人工神经网络模型。每个品种各25个苹果共75个用来建立神经网络模型,余下的共15个用于预测。对未知的15个样本进行预测,品种识别准确率达到100%。说明文章提出的方法具有很好的分类和鉴别作用,为苹果的品种鉴别提供了一种新方法。 相似文献
11.
应用可见-近红外光谱技术快速无损鉴别婴幼儿奶粉品种 总被引:1,自引:5,他引:1
为了快速无损鉴别婴幼儿奶粉品种,提出了结合偏最小二乘(PLS)法和人工神经网络(ANN)综合预测婴幼儿奶粉品种的新方法。获取婴幼儿奶粉样本在400~1 000 nm波段的漫反射光谱,采取平均平滑法和多元散射校正(MSC)进行预处理,用PLS建立校正模型进行模式特征分析及主成分的提取。经过交互验证法判别,提取7个主成分作为神经网络的输入变量,奶粉的品种值作为输出,建立了三层BP神经网络。9个典型品种的婴幼儿奶粉各取样本30个,共计270个作为训练集。随机抽取的各个品种的10个样本,共90个作为预测检验样本,结果表明,90个未知样本的品种预测准确率为100%。说明提出的方法具有很好的分类和鉴别作用,为婴幼儿奶粉的品种快速无损鉴别提供了一种新方法。 相似文献
12.
现有的玉米种子品种鉴别方法检测时间长,费用高,不易大批量快速鉴别。提出了一种基于近红外光谱数据快速鉴别商品玉米品种的新方法。先使用傅里叶变换近红外光谱仪获得从4 000到12 000 cm-1波段范围的37个商品玉米品种籽粒的漫反射光谱数据。对原始光谱进行矢量归一化预处理以消除噪声干扰,为了找到玉米品种籽粒的光谱特征波段,提出一种基于标准差的方法,进而对寻找到的玉米籽粒特征波段光谱做主成分分析(PCA),取能反映玉米品种 99.98% 光谱信息的前10个主成分。最后使用仿生模式识别 (BPR)方法建立了37个玉米品种鉴别模型,对于每个品种的25个样本,随机挑选15个样本作为训练样本,其余10个样本作为第一测试集,其他品种共900个样本作为第二测试集。该鉴别模型对于37个玉米品种的平均正确识别率为94.3%。该方法的进一步研究有利于建立以近红外光谱为基础的物理指纹品种鉴别技术。 相似文献
13.
基于遗传算法的近红外光谱橄榄油产地鉴别方法研究 总被引:10,自引:0,他引:10
提出了一种应用近红外光谱技术快速无损鉴别橄榄油产地的新方法。采用近红外光谱仪获取三种不同产地的橄榄油各30个样本的光谱漫反射特征曲线,利用全局搜索算法-遗传算法提取特征波长,即从光谱751个波长数据提取9个特征波长数据,并将其作为主成分分析法的输入变量,运用主成分分析法建立分析校正模型。结果表明,主成分1和2累计可信度已达99.130%,对不同产地的橄榄油有很好的聚类作用,同时也说明遗传算法抽取特征波长方法正确。将提取到的六种主成分作为BP神经网络的输入变量,品种类型作为神经网络的输出变量,建立3层人工神经网络模型,对30个未知橄榄油产地进行预测,预测结果准确率达100%。该方法能快速无损地检测橄榄油产地,同时也为其他油类产地鉴别提供了一种新方法。 相似文献
14.
PCA和SPA的近红外光谱识别白菜种子品种研究 总被引:2,自引:0,他引:2
为了实现对不同品种白菜种子的快速无损鉴别,应用近红外光谱技术获取白菜种子的光谱反射率,首先采用变量标准化校正和多元散射校正对原始光谱进行预处理;其次,采用主成分分析法(PCA)对光谱数据进行聚类分析,从定性分析的角度得到三种不同白菜种子的特征差异,并采用连续投影算法(SPA)选取特征波长;最后,分别基于全波段光谱、PCA分析得到的前3个主成分变量以及SPA算法选取的特征波长,建立了最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型进行白菜种子不同品种的鉴别。从主成分PC1、PC2得分图中可以看出,主成分1和2对不同种类白菜种子具有很好的聚类作用。基于特征波长建立的PLS-DA和LS-SVM模型的判别结果优于基于主成分变量建立的模型,其中基于特征波长建立的LS-SVM模型识别效果最优,建模集和预测集的品种识别率均达到100%。结果表明,通过SPA算法选取的6个特征波长变量能够很好的反映光谱信息,提出的SPA算法结合LS-SVM预测模型能获得满意的分类结果,为白菜种子品种的识别提供了一种新方法。 相似文献
15.
基于可见-近红外光谱的咖啡品牌鉴别研究 总被引:1,自引:4,他引:1
利用可见-近红外光谱技术对市场上三种不同品牌咖啡品种进行鉴别。分别采用主成分分析法与BP神经网络结合和小波变换与BP神经网络结合两种组合模型进行分析预测。利用主成分分析法与小波变换的数据压缩功能和BP神经网络的学习预测能力实现对不同品牌咖啡的鉴别。实验采用3个品种共60个样本建立模型,30个样本进行品种鉴别,结果表明,两种鉴别模型的咖啡品种鉴别率均为100%。同时也表明,小波变换用于数据压缩无论是在压缩时间上还是在压缩能力上都优于主成分分析法。说明通过小波变换和BP神经网络相结合建立模型进行不同品牌咖啡鉴别具有分析速度快,鉴别能力强的特点,为快速鉴别纯品咖啡提供了新的方法,同时也为确定不同品牌咖啡选用咖啡豆品种奠定了基础。 相似文献