首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the Dirac equation in a spacetime that represents the nonlinear superposition of the Schwarzschild solution to an external, stationary electromagnetic field. The set of equations representing the uncharged Dirac particle in the Newman–Penrose formalism is decoupled into a radial and an angular parts. We obtain exact analytical solutions of the angular equations. We manage to obtain the radial wave equations with effective potentials. Finally, we study the potentials by plotting them as a function of radial distance and examine the effect of the twisting parameter and the frequencies on the potentials.  相似文献   

2.
The general massive spin-(3/2) (Rarita–Schwinger) field equation in Schwarzschild geometry, previously separated by variable separation, is further studied. The orthogonality of the solutions of the angular equations is exploited. The study of the radial equations, that are proposed in the most detailed form, is reduced to the study of four coupled differential equations. The equations are discussed and integrated near the Schwarzschild radius and for zero and large values of the radial coordinate. A covariant product of states is considered that is induced by a conserved current. It is shown the existence of states that are bound in the scalar product without implying the existence of a discrete energy spectrum.  相似文献   

3.
We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.  相似文献   

4.
A gauge-invariant Rarita-Schwinger theory of a massive spin-3/2 particle interacting with external electromagnetic, gravitational and dilaton fields is obtained by Kaluza-Klein reduction of a massless Rarita-Schwinger theory with graviational interaction. Fermionic gauge invariance serves to determine the background equations of motion. The couplings with external fields obtained by the Kaluza-Klein reduction are shown to lead to the absence of the classical Velo-Zwanziger problem and on quantizing using Dirac's procedure, the field anticommutators are found to be positive definite.  相似文献   

5.
Relativistic dynamics of distributed mass and charge densities of the extended classical particle is considered for arbitrary gravitational and electromagnetic fields. Both geodesic and field gravitational equations can be derived by variation of the same Lagrange density in the classical action of a nonlocal particle distributed over its radial field. Vector geodesic relations for material space densities are contraction consequences of tensor gravitational equations for continuous sources and their fields. Classical four-flows of elementary material space depend on local electromagnetic fourpotentials for charged densities, as in quantum theory. Besides the Lorentz force, these potentials result in two more accelerating factors vanishing under equilibrium internal stresses within the continuous particle.  相似文献   

6.
Exact solutions for transition amplitudes for particle production and stimulated emission by external sources are derived forfinite temperatures. More precisely, we obtain the expressions for amplitudes for the emission of an arbitrary number of particles by the sources, and correspondingstimulated emission processes, when one is dealing with a generalized multiparticle state (rather than the vacuum) at finite temperatures. The solutions are given for spin-0, massive and massless (photons) spin-1, and spin-1/2 particles. As applications, we study the process: photon any photons, in the presence of a strong external electromagnetic current, with the net release of a specified energy, and work out the power radiated by a given electromagnetic current distribution, all at finite temperatures. The latter application includes the radiation emitted by a point charged particle atT 0 as a special case.  相似文献   

7.
This paper deals with situations that illustrate how the violation of Lorentz symmetry in the gauge sector may contribute to magnetic moment generation of massive neutral particles with spin- and spin-1. The procedure we adopt here is based on Relativistic Quantum Mechanics. We work out the non-relativistic regime that follows from the wave equation corresponding to a certain particle coupled to an external electromagnetic field and a background that accounts for the Lorentz-symmetry violation, and we thereby read off the magnetic dipole moment operator for the particle under consideration. We keep track of the parameters that govern the non-minimal electromagnetic coupling and the breaking of Lorentz symmetry in the expressions we get for the magnetic moments in the different cases we contemplate. Our claim is that the tiny magnetic dipole moment of truly-elementary neutral particles might signal Lorentz-symmetry violation.  相似文献   

8.
In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particles in a Gödel-type space–time with electromagnetic interactions. We derive the radial wave equation of the Klein–Gordon equation with an internal magnetic flux field and Coulomb-type potential in the Som–Raychaudhuri space–time with cosmic string. We solve this equation and analyze the analog effect in relation to the Aharonov–Bohm effect for bound states.  相似文献   

9.
A two spinor lagrangian formulation of field equations for massive particle of arbitrary spin is proposed in a curved space-time with torsion. The interaction between fields and torsion is expressed by generalizing the situation of the Dirac equation. The resulting field equations are different (except for the spin-1/2 case) from those obtained by promoting the covariant derivatives of the torsion free equations to include torsion. The non linearity of the equations, that is induced by torsion, can be interpreted as a self-interaction of the particle. The spin-1 and spin-3/2 cases are studied with some details by translating into tensor form. There result the Proca and Rarita-Schwinger field equations with torsion, respectively. PACS numbers: 03.65.Pm; 04.20.Cv; 04.20.Fy.  相似文献   

10.
The influence of the De Witt self-action force on the motion of and electromagnetic emission from a charged particle in a Schwarzschild field is considered. It is shown that a charged particle in a Schwarzschild field is equivalent to a neutral particle of the same mass in a certain Reissner-Nordstrom field. A relationship is found between the power of the electromagnetic emission from an accelerated charge and the power of the thermal emission generated in a reference frame with the same acceleration at the event horizon. The quantum-mechanical problem of the motion of and emission from a charge in the field of a minihole is considered. Wave functions, the energy spectrum, and the widths of quasi-stationary levels are found with allowance for the De Witt self-action force. It is shown that the latter is important for large charges, when the solution becomes oscillatory. "Brainstorm" Little Science and Technology Enterprise. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 75–82, July, 1998.  相似文献   

11.
The causal Green function or Feynman propagator for the free-field Klein-Gordon equation and related singular functions, defined as distributions, are related to the causal time-boundary data. Probability densities and amplitudes are defined in terms of the solutions of the Klein-Gordon equation for a complex scalar field interacting with an electromagnetic field. The convergence of the perturbation expansion of the solution of the Klein-Gordon equation for a charged scalar particle in an external field is shown for well-behaved electromagnetic potentials. Other relativistic wave equations are discussed briefly.  相似文献   

12.
Analogs for Maxwell’s equations with fractional derivatives are obtained using the concepts of an effective current and the velocity of a charged particle in a medium. The calibration invariance is considered and a diffusion-wave equation is found and analyzed for scalar and vector potentials. It is shown that the stochastic nature of charged particle motion in a medium influences the dynamics of an electromagnetic field.  相似文献   

13.
We investigate the creation rate of massive spin-1 bosons in the de Sitter universe by a time-dependent electric field via the Duffin–Kemmer–Petiau (DKP) equation. Complete solutions are given by the Whittaker functions and particle creation rate is computed by using the Bogoliubov transformation technique. We analyze the influence of the electric field on the particle creation rate for the strong and vanishing electric fields. We show that the electric field amplifies the creation rate of charged, massive spin-1 particles. This effect is analyzed by considering similar calculations performed for scalar and spin-1/21/2 particles.  相似文献   

14.
In the framework of the Newman-Penrose formalism the electromagnetic field of a general stationary source occurring in the vicinity of a Schwarzschild black hole is obtained in the test-field approximation. The field is expressed in terms of hypergeometric functions (radial parts) and spin-s spherical harmonics (angular parts) both outside and inside the radius at which the source is, located. As examples, the fields of point charges, charged rings, current loops and magnetic dipoles (generally located in non-axisymmetric positions) are calculated.  相似文献   

15.
In the Cohen–Glashow Very Special Relativity we exhibit possible modifications to the Maxwell theory and to the quantum electrodynamics Lagrangian in some generality, and discuss characteristic features depending on the modifications. Modified gauge transformations in SIM(2)-invariant theories are introduced and the related gauge fields, with two polarization states, can have nonzero mass. Also considered are SIM(2)-covariant modifications to the Proca-type field equations for a massive spin-1 particle.  相似文献   

16.
The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism is discussed.Received: 4 June 2005, Published online: 27 July 2005  相似文献   

17.
The separation of variables of the spin- field equation is performed in detail in the Schwarzschild geometry by means of the Newman Penrose formalism. The separated angular equations coincide with those relative to the Robertson-Walker space-time. The separated radial equations, that are much more entangled, can be reduced to four ordinary differential equations, each in one only radial function. As a consequence of the particular nature of the spin coefficients it is shown, by induction, that the massive field equations can be separated for arbitrary spin. baselineskip=12 pt PACS 04.20.Cv- Fundamental problems and general formalism. PACS 03.65.Pm- Relativistic wave equations. PACS 02.30.Jr- Partial differential equations. PACS 04.20.Jb- Exact solutions.  相似文献   

18.
We have investigated the effects of acceleration of a charged particle on its Cerenkov emission and ionization-losses. We have considered the accelerated motion of a charged particle in an infinite medium with the acceleration parallel to the direction of its motion. We have used the method of Fourier transforms to solve the Maxwell's equations with appropriate current and charge-densities to find electromagnetic fields and hence the force experienced by the incident charge due to its interaction with the medium (dielectric or plasma). The results obtained are general and applicable to any acceleration. In the approximations of ‘small acceleration’ and ‘small interaction time’, we have solved the wave equations and determined electromagnetic potentials. It is found that the acceleration of the charged particle strongly changes both its ionization-loss and Cerenkov emission.  相似文献   

19.
The equations alternative to those of dynamics of a point charged particle are derived. In this case, the holonomic vector field of a special type represents the momentum, and the symmetric tensor is the external field. A class of electromagnetic fields which can be mechanically interpreted in terms of deformation theory is also considered.  相似文献   

20.
吴可  郭汉英 《物理学报》1982,31(10):1443-1448
本文指出,如同在广义相对论中粒子运动方程是场方程的推论一样,在引力场与电磁场的Kaluza统一理论中,粒子的运动方程也是场方程的一个推论,即带电粒子在引力场和电磁场中的运动方程可以从Kaluza统一理论中的场方程推导出来。本文进而在Minkowski时空的条件下,借助Maxwell理论的Kaluza形式,得到Maxwell方程也包含了带电粒子运动方程的结论。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号