首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.

Background  

SCF ubiquitin ligases share the core subunits cullin 1, SKP1, and HRT1/RBX1/ROC1, which associate with different F-box proteins. F-box proteins bind substrates following their phosphorylation upon stimulation of various signaling pathways. Ubiquitin-mediated destruction of the fission yeast cyclin-dependent kinase inhibitor Rum1p depends on two heterooligomerizing F-box proteins, Pop1p and Pop2p. Both proteins interact with the cullin Pcu1p when overexpressed, but it is unknown whether this reflects their co-assembly into bona fide SCF complexes.  相似文献   

3.

Background  

The COP9 signalosome (CSN) is a conserved protein complex in eukaryotic cells consisting of eight subunits (CSN1 to CSN8). Recent data demonstrate that the CSN is a regulator of the ubiquitin (Ub) proteasome system (UPS). It controls substrate ubiquitination by cullin-RING Ub ligases (CRLs), a process that determines substrate specificity of the UPS. The intrinsic deneddylating activity localized to CSN5 as well as the associated kinases and deubiquitinating activity are involved in the regulatory function of CSN. The exact mechanisms are unclear. In this study we knocked down CSN1 (siCSN1), CSN3 (siCSN3) and CSN5 (siCSN5) by specific siRNA oligos permanently expressed in HeLa cells. The analysis and comparison of siRNA cells revealed differential impact of individual subunits on CSN structure and function.  相似文献   

4.
Hoshi  Masako  Ohki  Yu  Ito  Keisuke  Tomita  Taisuke  Iwatsubo  Takeshi  Ishimaru  Yoshiro  Abe  Keiko  Asakura  Tomiko 《BMC biochemistry》2013,14(1):1-8

Background

The ubiquitin ligase COP1, COnstitutively Photomorphogenic 1, functions in many biological responses in mammalian cells, but its downstream pathway remains unclear.

Results

Here, we identified FIP200, a key regulator of mammalian autophagy, as a novel COP1-interacting protein by yeast two-hybrid screening. The interaction was confirmed by a GST-pulldown assay. Split-GFP analysis revealed that interaction between COP1 and FIP200 predominantly occurred in the cytoplasm and was enhanced in cells treated with UV irradiation. Different forms of FIP200 protein were expressed in cultured mammalian cells, and ectopic expression of COP1 reduced one of such forms.

Conclusions

These data suggest that COP1 modulates FIP200-associated activities, which may contribute to a variety of cellular functions that COP1 is involved in.  相似文献   

5.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

6.

Background

A novel fluorescent cAMP analog (8-[Pharos-575]- adenosine-3', 5'-cyclic monophosphate) was characterized with respect to its spectral properties, its ability to bind to and activate three main isoenzymes of the cAMP-dependent protein kinase (PKA-Iα, PKA-IIα, PKA-IIβ) in vitro, its stability towards phosphodiesterase and its ability to permeate into cultured eukaryotic cells using resonance energy transfer based indicators, and conventional fluorescence imaging.

Results

The Pharos fluorophore is characterized by a Stokes shift of 42 nm with an absorption maximum at 575 nm and the emission peaking at 617 nm. The quantum yield is 30%. Incubation of the compound to RIIα and RIIβ subunits increases the amplitude of excitation and absorption maxima significantly; no major change was observed with RIα. In vitro binding of the compound to RIα subunit and activation of the PKA-Iα holoenzyme was essentially equivalent to cAMP; RII subunits bound the fluorescent analog up to ten times less efficiently, resulting in about two times reduced apparent activation constants of the holoenzymes compared to cAMP. The cellular uptake of the fluorescent analog was investigated by cAMP indicators. It was estimated that about 7 μM of the fluorescent cAMP analog is available to the indicator after one hour of incubation and that about 600 μM of the compound had to be added to intact cells to half-maximally dissociate a PKA type IIα sensor.

Conclusion

The novel analog combines good membrane permeability- comparable to 8-Br-cAMP – with superior spectral properties of a modern, red-shifted fluorophore. GFP-tagged regulatory subunits of PKA and the analog co-localized. Furthermore, it is a potent, PDE-resistant activator of PKA-I and -II, suitable for in vitro applications and spatial distribution evaluations in living cells.  相似文献   

7.

Background

Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge. The 8th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein.

Results

The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature. It was found that the C290V mutation rendered the protein 1.1 to 2.7 fold more stable depending on the denaturing agent.

Conclusion

It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.  相似文献   

8.
Calix[4]arene 1, thiacalix[4]arenes 2(LH4), and calix[4]arenethioether 3 were compared in palladium extraction from nitric acid solutions; D Pd for 2 was shown to be 2?C3 orders of magnitude larger than for 1 at pH > 3 (comparable with 3) because of cation-exchange and coordination extraction of palladium. It was shown by extraction methods and IR spectroscopy that thiacalixarenes 2 extract complex species [Pd n L m H4 ? 2n ] (m = 1, n = 1 and 2) and [(PdA2) n L m H4] (A = m = 1, n = 1?C4) from nitric acid solutions at pH 3. Extraction constants for these palladium species that satisfactorily describe experimental data were calculated. As distinct from 3, thiacalixarenes 2 are promising for the combined extraction of palladium and silver from alkaline solutions and the selective extraction of fission palladium from nitric acid solutions. Phosphorylated at the upper rim thiacalixarenes 2 can be considered as bifunctional extractants for the separation of fission radionuclides.  相似文献   

9.

Background  

SCF ubiquitin ligases target numerous proteins for ubiquitin dependent proteolysis, including p27 and cyclin E. SCF and other cullin-RING ligases (CRLs) are regulated by the ubiquitin-like protein Nedd8 that covalently modifies the cullin subunit. The removal of Nedd8 is catalyzed by the Jab1/MPN domain metalloenzyme (JAMM) motif within the Csn5 subunit of the Cop9 Signalosome.  相似文献   

10.
The solution dependence of gas-phase unfolding for ubiquitin [M + 7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. Figure
?  相似文献   

11.
CSN5 is the zinc metalloprotease subunit of the COP9 signalosome (CSN), which is an important regulator of cullin‐RING E3 ubiquitin ligases (CRLs). CSN5 is responsible for the cleavage of NEDD8 from CRLs, and blocking deconjugation of NEDD8 traps the CRLs in a hyperactive state, thereby leading to auto‐ubiquitination and ultimately degradation of the substrate recognition subunits. Herein, we describe the discovery of azaindoles as a new class of CSN5 inhibitors, which interact with the active‐site zinc ion of CSN5 through an unprecedented binding mode. The best compounds inhibited CSN5 with nanomolar potency, led to degradation of the substrate recognition subunit Skp2 in cells, and reduced the viability of HCT116 cells.  相似文献   

12.
13.
The production of glass that emulates fallout is desired by the nuclear forensics community for training and measurement exercises. The composition of nuclear fallout is complex, with widely varying isotopic compositions (Fahey et al., Proc Natl Acad Sci USA 107(47):20207–20212, 2010; Bellucci et al., Anal Chem 85:7588–7593, 2013; Wallace et al., J Radioanal Nucl Chem, 2013; Belloni et al., J Environ Radioact 102:852–862, 2011; Freiling, Science 139:1058–1059, 1963; Science 133:1991–1999, 1961; Bunney and Sam Government Report: Naval Ordinance Laboratory, White Oak, 1971). As the gaseous cloud traverses from hotter to cooler regions of the atmosphere, the processes of condensation and nucleation entrain environmental materials, vaporized nuclear materials and fission products. The elemental and isotopic composition of the fission products is altered due to chemical fractionation (i.e. the fission product composition that would be expected from fission of the original nuclear material is altered by differences in condensation rates of the elements); the fallout may be enriched or depleted in volatile or refractory fission products. This paper describes preliminary work to synthesize, irradiate and fractionate the fission product content of irradiated particulate glass using a thermal distillation 2 h after irradiation. The glass was synthesized using a solution-based polymerization of tetraethyl orthosilicate. (Izrael, Radioactive fallout after nuclear explosions and accidents, 2002) Uranium was incorporated into the glass particulate at trace concentrations during polymerization. The particulate was subjected to a short thermal neutron irradiation then heated to 1,273 K approximately 2 h after the end of irradiation. Fission products of 133, 134, 135I, 132, 134Te, 135Xe, 138Cs and 91, 92Sr were observed to be distilled from the particulate. The results of these preliminary studies are discussed.  相似文献   

14.
15.

Background

The ALG2-interacting protein X (ALIX)/AIP1 is an adaptor protein with multiple functions in intracellular protein trafficking that plays a central role in the biogenesis of enveloped viruses. The ubiquitin E3-ligase POSH (plenty of SH3) augments HIV-1 egress by facilitating the transport of Gag to the cell membrane. Recently, it was reported, that POSH interacts with ALIX and thereby enhances ALIX mediated phenotypes in Drosophila.

Results

In this study we identified ALIX as a POSH ubiquitination substrate in human cells: POSH induces the ubiquitination of ALIX that is modified on several lysine residues in vivo and in vitro. This ubiquitination does not destabilize ALIX, suggesting a regulatory function. As it is well established that ALIX rescues virus release of L-domain mutant HIV-1, HIV-1ΔPTAP, we demonstrated that wild type POSH, but not an ubiquitination inactive RING finger mutant (POSHV14A), substantially enhances ALIX-mediated release of infectious virions derived from HIV-1ΔPTAP L-domain mutant (YPXnL-dependent HIV-1). In further agreement with the idea of a cooperative function of POSH and ALIX, mutating the YPXnL-ALIX binding site in Gag completely abrogated augmentation of virus release by overexpression of POSH. However, the effect of the POSH-mediated ubiquitination appears to be auxiliary, but not necessary, as silencing of POSH by RNAi does not disturb ALIX-augmentation of virus release.

Conclusion

Thus, the cumulative results identified ALIX as an ubiquitination substrate of POSH and indicate that POSH and ALIX cooperate to facilitate efficient virus release. However, while ALIX is obligatory for the release of YPXnL-dependent HIV-1, POSH, albeit rate-limiting, may be functionally interchangeable.  相似文献   

16.

Background

The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1.

Results

To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo.

Conclusions

Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.  相似文献   

17.

Background

Epitope tags and fluorescent fusion proteins have become indispensable molecular tools for studies in the fields of biochemistry and cell biology. The knowledge collected on the subdomain organization of the two subunits of the adhesion complex dystroglycan (DG) enabled us to insert the 10 amino acids myc-tag at different locations along the ??-subunit, in order to better visualize and investigate the DG complex in eukaryotic cells.

Results

We have generated two forms of DG polypeptides via the insertion of the myc-tag 1) within a flexible loop (between a.a. 170 and 171) that separates two autonomous subdomains, and 2) within the C-terminal domain in position 500. Their analysis showed that double-tagging (the ??-subunit is linked to GFP) does not significantly interfere with the correct processing of the DG precursor (pre-DG) and confirmed that the ??-DG N-terminal domain is processed in the cell before ??-DG reaches its plasma membrane localization. In addition, myc insertion in position 500, right before the second Ig-like domain of ??-DG, proved to be an efficient tool for the detection and pulling-down of glycosylated ??-DG molecules targeted at the membrane.

Conclusions

Further characterization of these and other myc-permissive site(s) will represent a valid support for the study of the maturation process of pre-DG and could result in the creation of a new class of intrinsic doubly-fluorescent DG molecules that would allow the monitoring of the two DG subunits, or of pre-DG, in cells without the need of antibodies.  相似文献   

18.
A conventional electron capture dissociation (ECD) spectrum of a protein is uniquely characteristic of the first dimension of its linear structure. This sequence information is indicated by summing the primary c m+ and z m+? products of cleavage at each of its molecular ion’s inter-residue bonds. For example, the ECD spectra of ubiquitin (M?+?nH)n+ ions, n?=?7–13, provide sequence characterization of 72 of its 75 cleavage sites from 1843 ions in seven c (1–7)+ and eight z (1–8)+? spectra and their respective complements. Now we find that each of these c/z spectra is itself composed of “charge site (CS)” spectra, the c m+ or z m+? products of electron capture at a specific protonated basic residue. This charge site has been H-bonded to multiple other residues, producing multiple precursor ion forms; ECD at these residues yields the multiple products of that CS spectrum. Closely similar CS spectra are often formed from a range of charge states of ubiquitin and KIX ions; this indicates a common secondary conformation, but not the conventional α-helicity postulated previously. CS spectra should provide new capabilities for comparing regional conformations of gaseous protein ions and delineating ECD fragmentation pathways.
Figure
?  相似文献   

19.
In recent years, mass spectrometry has become a valuable tool for detecting and characterizing protein–protein interactions and for measuring the masses and subunit stoichiometries of noncovalent protein complexes. The gas-phase dissociation of noncovalent protein assemblies via tandem mass spectrometry can be useful in confirming subunit masses and stoichiometries; however, dissociation experiments that are able to yield subunit sequence information must usually be conducted separately. Here, we furnish proof of concept for a method that allows subunit sequence information to be directly obtained from a protein aggregate in a single gas-phase analysis. The experiments were carried out using a quadrupole time-of-flight mass spectrometer equipped with a traveling-wave ion mobility separator. This instrument configuration allows for a noncovalent protein assembly to be quadrupole selected, then subjected to two successive rounds of collision-induced dissociation with an intervening stage of ion mobility separation. This approach was applied to four model proteins as their corresponding homodimers: glucagon, ubiquitin, cytochrome c, and β-lactoglobulin. In each case, b- and y-type fragment ions were obtained upon further collisional activation of the collisionally-released subunits, resulting in up to 50% sequence coverage. Owing to the incorporation of an ion mobility separation, these results also suggest the intriguing possibility of measuring complex mass, complex collisional cross section, subunit masses, subunit collisional cross sections, and sequence information for the subunits in a single gas-phase experiment. Overall, these findings represent a significant contribution towards the realization of protein interactomic analyses, which begin with native complexes and directly yield subunit identities. Figure
?  相似文献   

20.

Abstract

The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i) expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii) validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health.

Publication history

Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号