首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the linear coordination polymer catena‐poly[[[aqua(1,10‐phenanthroline‐κ2N,N′)copper(II)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2:O2′,N,O6‐[(nitrato‐κ2O,O′)bismuth(III)]‐μ‐pyridine‐2,6‐dicarboxylato‐κ4O2,N,O6:O6′] dihydrate], {[BiIIICuII(C7H3NO4)2(NO3)(C12H8N2)(H2O)]·2H2O}n, the BiIII cation is O,N,O′‐chelated by the two pyridine‐2,6‐dicarboxylate ligands and O,O′‐chelated by the nitrate anion, the nine coordinating atoms conferring a tricapped trigonal prismatic environment on the metal centre. Each pyridine‐2,6‐dicarboxylate ligand uses one of its carboxylate O atoms to bind to an aqua(1,10‐phenanthroline)copper(II) unit, the Cu—O dative bonds giving rise to the formation of a ribbon motif. The CuII cation exhibits a square‐pyramidal geometry. The ribbon motif propagates along the shortest axis of the triclinic unit cell and the solvent water molecules are hydrogen bonded to the same ribbon.  相似文献   

2.
The construction of supramolecular architectures based on inorganic–organic coordination frameworks with weak noncovalent interactions has implications for the rational design of functional materials. A new crystalline binuclear copper(II) one‐dimensional polymeric chain, namely catena‐poly[[[tetrakis(μ‐4‐azaniumylbutanoato‐κ2O :O ′)dicopper(II)(Cu Cu )]‐μ‐chlorido‐[diaquadichloridocopper(II)]‐μ‐chlorido] bis(perchlorate)], {[Cu3Cl4(C4H9NO2)4(H2O)2](ClO4)2}n , was obtained by the reaction of 4‐aminobutyric acid (GABA) with CuCl2·2H2O in aqueous solution. The structure was established by single‐crystal X‐ray diffraction and was also characterized by IR spectroscopy and magnetic measurements. The crystal structure consists of [{Cu2(GABA)4}{CuCl4(H2O)2}]+ cations and isolated perchlorate anions. Two symmetry‐related CuII centres are bridged via carboxylate O atoms into a classical paddle‐wheel configuration, with a Cu…Cu distance of 2.643 (1) Å, while bridging Cl atoms complete the square‐pyramidal geometry of the metal atoms. The Cl atoms connect the paddlewheel moieties to a second CuII atom lying on an octahedral site, resulting in infinite helical chains along the c axis. The packing motif exhibits channels containing free perchlorate anions. The crystal structure is stabilized by hydrogen bonds between the perchlorate anions, the coordinated water molecules and the ammonium groups of the polymeric chains. The magnetic analysis of the title compound indicates a nontrivial antiferromagnetic behaviour arising from alternating weak–strong antiferromagnetic coupling between neighbouring CuII centres.  相似文献   

3.
The cyanide ligand can act as a strong σ‐donor and an effective π‐electron acceptor that exhibits versatile bridging abilities, such as terminal, μ2C:N, μ3C:C:N and μ4C:C:N:N modes. These ligands play a key role in the formation of various copper(I) cyanide systems, including one‐dimensional (1D) chains, two‐dimensional (2D) layers and three‐dimensional (3D) frameworks. According to the literature, numerous coordination polymers based on terminal, μ2C:N and μ3C,C,N bridging modes have been documented so far. However, systems based on the μ4C:C:N:N bridging mode are relatively rare. In this work, a novel cyanide‐bridged 3D CuI coordination framework, namely poly[(μ2‐2,2′‐biimidazole‐κ2N3:N3′)(μ4‐cyanido‐κ4C:C:N:N)(μ2‐cyanido‐κ2C:N)dicopper(I)], [Cu2(CN)2(C6H6N4)]n, (I), was synthesized hydrothermally by reaction of environmentally friendly K3[Fe(CN)6], CuCl2·2H2O and 2,2′‐biimidazole (H2biim). It should be noted that cyanide ligands may act as reducing agents to reduce CuII to CuI under hydrothermal conditions. Compound (I) contains diverse types of bridging ligands, such as μ4C:C:N:N‐cyanide, μ2C:N‐cyanide and μ2‐biimidazole. Interestingly, the [Cu2] dimers are bridged by rare μ4C:C:N:N‐mode cyanide ligands giving rise to the first example of a 1D dimeric {[Cu24C:C:N:N)]n+}n infinite chain. Furthermore, adjacent dimer‐based chains are linked by μ2C:N bridging cyanide ligands, generating a neutral 2D wave‐like (4,4) layer structure. Finally, the 2D layers are joined together via bidentate bridging H2biim to create a 3D cuprous cyanide network. This arrangement leads to a systematic variation in dimensionality from 1D chain→2D sheet→3D framework by different types of bridging ligands. Compound (I) was further characterized by thermal analysis, solid‐state UV–Vis diffuse‐reflectance and photoluminescence studies. The solid‐state UV–Vis diffuse‐reflectance spectra show that compound (I) is a wide‐gap semiconductor with band gaps of 3.18 eV. The photoluminescence study shows a strong blue–green photoluminescence at room temperature, which may be associated with metal‐to‐ligand charge transfer.  相似文献   

4.
Single crystals of 2D coordination network {Cu2 L 2 ⋅ (DMF)3(H2O)3}n ( 1-DMF ) were prepared by reaction of commercial reagents 3-formyl-4-hydroxybenzoic acid (H2 L ) and Cu(NO3)2 in dimethylformamide (DMF). The single-crystal structure shows two distinct Cu(II) coordination environments arising from the separate coordination of Cu(II) cations to the carboxylate and salicylaldehydato moieties on the linker, with 1D channels running through the structure. Flexibility is exhibited on solvent exchange with ethanol and tetrahydrofuran, while porosity and the unique overall connectivity of the structure are retained. The activated material exhibits type I gas sorption behaviour and a BET surface area of 950 m2 g−1 (N2, 77 K). Notably, the framework adsorbs negligible quantities of CH4 compared with CO2 and the C2Hn hydrocarbons. It exhibits exceptional selectivity for C2H2/CH4 and C2H2/C2Hn, which has applicability in separation technologies for the isolation of C2H2.  相似文献   

5.
The DNA binding of a dicationic pyridylimine-based dicopper(I) metallosupramolecular cylinder is reported together with its ability to act as an artificial nuclease. The cylinder binds strongly to DNA; more strongly than the spherical dication [Ru(phen)(3)](2+) (phen=1,10-phenanthroline), but more weakly than the corresponding tetracationic cylinders. DNA coiling effects are not observed with this dication, in contrast to the situation with the previously reported tetracationic cylinder involving a similar ligand. Linear dichroism (LD) data suggests that the dicopper cylinder binds in a different orientation from that of the tetracationic iron cylinder. Furthermore, the dicopper cylinder shows DNA-cleavage activity in the presence of peroxide. Of particular note is that the cylinder displays a marked and unusual ability to cleave both DNA strands at the same site, probably reflecting its dinuclear nature and possibly its mode of binding to the DNA.  相似文献   

6.
7.
8.
1INTRODUCTION Atom transfer radical addition is an efficient me-thod for carbon-carbon bond formation in organic synthesis[1,2].In some of these reactions,a transi-tion-metal catalyst acts as a carrier of the halogen atom in a reversible redox process.The transition-metal-catalyzed has been successfully used to con-trol radical polymerization[3].In the process,the transition-metal species initially abstracts halogen atom X from organic halide to form oxidized species and carbon-centered r…  相似文献   

9.
10.
11.
12.
13.
The reaction of the [{CpMo(CO)(2)}(2)(μ,η(2):η(2)-P(2))] (Cp=cyclopentadienyl) metallo-ligand 2 with pre-organized Cu(I) bi- and trimetallic precursors afforded new coordination complexes with unprecedented coordination modes for a Mo(2)P(2) complex. Variable-temperature solution and solid-state (31)P NMR spectroscopy measurements were performed and X-ray diffraction studies revealed an η(2):η(1) coordination mode for the Mo(2)P(2) unit of 2 in the Cu(I) bimetallic complexes 3 and 4. DFT calculations were carried out to highlight the bonding situation of this unprecedented coordination mode in the Cu(I) bimetallic compound 3. It is built up from a side-on coordination of the P-P σ bond to one copper ion and from the interaction of the lone pair of one phosphorus atom with the second copper ion. The remaining available lone pair of the second phosphorus atom can be involved as well to interact with an additional metal centre, as evidenced in the Cu(I) trimetallic compound 5 in which an η(2):η(1):η(1) coordination mode of the ligand 2 is observed. Derivative 3 can be used as a molecular clip to obtain discrete π-stacked dimers through a ligand exchange reaction between acetonitrile ligands and cyano-capped π-conjugated systems, indicating the stability of the new η(2):η(1) coordination mode.  相似文献   

14.
15.
The title compound, catena‐poly[[[diaqua(methanol‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] [[aqua(aqua/methanol‐κO)(perchlorato‐κO)copper(II)]‐μ‐N‐(4‐methylpyrimidin‐2‐yl‐κN1)pyrazin‐2‐amine‐κ2N1:N4] tris(perchlorate) methanol monosolvate 1.419‐hydrate], {[Cu(C9H9N5)(CH3OH)(H2O)2][Cu(C9H9N5)(ClO4)(CH3OH)0.581(H2O)1.419](ClO4)3·CH3OH·1.419H2O}n, is a one‐dimensional straight‐chain polymer of N‐(4‐methylpyrimidin‐2‐yl)pyrazin‐2‐amine (L) with Cu(ClO4)2. The complex consists of two crystallographically independent one‐dimensional chains in which the CuII atoms exhibit two different octahedral coordination geometries. The L ligand coordinates to two CuII centres in a tridentate manner, with the pyrazine ring acting as a bridge linking the CuII coordination units and building an infinite one‐dimensional chain. Extensive hydrogen bonding among perchlorate anions, water molecules and L ligands results in three‐dimensional networks.  相似文献   

16.
17.
18.
19.
The molecular crystals [Li{N(SO2CF3)2}{C6H4(OCH3)2}2] and [Li{N(SO2CF3)2}{C6F2H2(OCH3)2}2] with solid‐state lithium ion conductivity have been synthesized by the addition of two equivalents of 1,2‐dimethoxybenzene or 1,2‐difluoro‐4,5‐dimethoxybenzene to Li{N(SO2CF3)2}, respectively. Single‐crystal X‐ray diffraction analysis revealed the formation of ionic conduction paths with an ordered arrangement of lithium ions in these crystal structures, afforded by the self‐ assembled stacking of molecular‐based channels consisting of N(SO2CF3)2 anion and 1,2‐dimethoxybenzene frameworks as a result of intermolecular aromatic and hydrogen interactions. These compounds show selective lithium ion conductivity as the anions behave as a component unit of the conduction paths. The relationship between the crystal structure and ionic conductivity of the molecular crystals provides a clue to the development of novel solid electrolytes based on molecular crystals showing fast and selective lithium ion conduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号