首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The models of "target" theory in radiation biology were used to evaluate the survival curves of human ovarian carcinoma cell line after exposure to adriamycin combined with ultrasound. 3AO cells were exposed to adriamycin in group ADR, to adriamycin after ultrasound exposure in group US+ADR, and to adriamycin prior to insonation in group ADR+US. The cell survival was determined by a clonogenic assay. The dose-response curves were fitted to two models, (1) single-hit, single-target model, (2) single-hit, multi-target model. The single-hit, multi-target model could fit the survival curve in group ADR, but it could only describe the survivals in groups US+ADR and ADR+US while the concentration of adriamycin was less than 0.05 mug/ml. These suggested that the single-hit, multi-target model could be conditionally used to describe the survival while cells were exposed to the combination of adriamycin and acoustic exposure. The models also were tools to understand the potentiation attributable to insonation.  相似文献   

2.
In order to determine whether ultrasound, alone or combined with verapamil, could reverse resistance in adriamycin resistant human ovarian carcinoma cell line SKOV(3)/ADR in vitro, cells were subjected to a variable concentration of adriamycin. Verapamil, ultrasound exposure and both of the two were used concurrently or sequentially. Survival rates were decreased in groups in which acoustic irradiation was exerted, or verapamil pretreated and both of which applied. Intracellular adriamycin levels were high where cytotoxicity was enhanced. These results revealed that ultrasound reverse drug resistance in ovarian carcinoma cells, and synergism also existed between verapamil and acoustic exposure if administrated sequentially. These effects were ascribed to increase of intracellular adriamycin accumulation.  相似文献   

3.
Ultrasound could potentiate cytotoxicity of adriamycin on cancer cell line as a result of increased intracellular accumulation ascribed to cavitation. In order to determine which free radical led to increase of drug content, effects of the free radical scavenger and antioxidant on increased intracellular adriamycin accumulation by ultrasound were investigated. The intracellular drug content of adriamycin was lower in the group where histidine was administrated before ultrasound exposure and in the group where mannitol was added after sonication. Drug accumulation was also decreased in groups in which vitamin C administrated either before or after ultrasonic exposure. These results suggested that hydroxyl radical play the leading role in synergism between ultrasound and adriamycin.  相似文献   

4.
Shao ZY  Zhai BJ  Zhao CL  Hu K  Shen DM  Wu F 《Ultrasonics》2008,48(4):297-302
Multidrug resistance (MDR) is one of the major obstacles to successful chemotherapy of human malignancies. Although many strategies have been explored to overcome MDR, none of them have been proven to be clinically useful until now. The aim of this study was to investigate whether a novel therapeutic ultrasound (US) approach would have useful effects on the reversal of MDR in cancer cells. Wild-type and MDR phenotype (HepG2/ADM) cells of the human hepatocarcinoma cell line HepG2 were exposed to 0.8 MHz US at an intensity of 0.43 W/cm2 for a 9 s exposure (total energy density: 3.87 J/cm2). After US exposure, cell number and viability were counted immediately, and flow cytometry was performed to measure retention of rhodamine 123 and adriamycin in HepG2 and HepG2/MDR cells. Both cell lines were then incubated in suspension with adriamycin, vincristine, etoposide, cisplatin and 5-fluorouracil, respectively, and the MTT assay was used to determine cytotoxicity. The results showed that US exposure could significantly increase the uptake of Rh123 and ADM by HepG2/ADM tumor cells. The resistant index for the chemotherapeutic drugs was significantly lower in the US-exposed HepG2/ADM cells than in those not exposed to US. It was therefore concluded that US exposure could enhance the sensitivity of HepG2/ADM tumor cells to these chemotherapeutic agents, and the functional and structural changes induced by previous US exposure in MDR tumor cells may be responsible for it. However, further study is needed to investigate the mechanism behind US-mediated reversal of MDR.  相似文献   

5.
The new modality of drug targeting of tumors that we are currently developing is based on drug encapsulation in polymeric micelles, followed by the localized release at the tumor site triggered by focused ultrasound. The rationale behind this approach is that drug encapsulation in micelles decreases systemic concentration of drug, diminishes intracellular drug uptake by normal cells, and provides passive drug targeting of tumors, thus reducing unwanted drug interactions with healthy tissues. Ultrasound irradiation is used to release drug from micelles at the tumor site and to enhance the intracellular drug uptake by tumor cells. An important advantage of ultrasound is that it is noninvasive, can penetrate deep into the interior of the body, can be focused and carefully controlled. Here we describe factors involved in the ultrasound interaction with viable cells in the absence and presence of drug carriers and anti-cancer drugs. We present in vivo effects of 1 MHz ultrasound on drug biodistribution, intratumoral distribution, and survival rates of immuno-compromised athymic nu/nu mice bearing ovarian carcinoma tumors.  相似文献   

6.
Ovarian cancer models were established in cyclophosphamide immunosuppressed mice by subrenal capsular cell fibrin clot transplantation. SKOV3 cancers were treated by adriamycin alone, or adriamycin combined with ultrasound exposure. SKOV3/ADR cancers were treated with adriamycin, as well as verapamil and insonation were administrated alone or concurrently. The results were: (1) Insonation alone could not suppress growth of tumours. (2) In SKOV3 cancers, ultrasound exposure potentiated the efficiency of adriamycin. (3) In SKOV3/ADR cancers, insonation reversed adriamycin resistance, but verapamil was not effective and no synergism existed between it and ultrasound. These findings revealed that ultrasound exposure enhanced the efficiency of adriamycin to both chemosensitive and chemoresistant ovarian cancers in vivo. Mechanisms were discussed.  相似文献   

7.
Purpose: This study aimed to clarify the effects of therapeutic ultrasound on intramuscular local blood circulation (and oxygen dynamics) using near-infrared spectroscopy (NIRS). Participants: The participants were 11 healthy males. Methods: All participants performed all three trials; (1) the ultrasound (US group), (2) without powered ultrasound (placebo group), and (3) rest (control group). Ultrasound was applied at 3 MHz, 1.0 W/cm2, and 100% duty cycle for 10 minutes. Evaluation index were oxygenated, deoxygenated, and total hemoglobin (Hb) concentrations in the intramuscular and skin surface temperature (SST). The experimental protocol was a total of 40 minutes, that is, 10 minutes before trial (rest), 10 minutes during the trial (ultrasound, placebo, and control), and 20 minutes after trial (rest). The NIRS and SST data collected before and after the trial were divided into 5 minutes intervals for further analysis. Results: Oxygenated and total hemoglobin levels were significantly higher in the US group than in the placebo and control groups for the 20 minutes after ultrasound (p < 0.01). The SST was significantly higher in the US group than in the control for 15 minutes after ultrasound (p < 0.05), while it was significantly lower in the placebo group than in the US and control groups for 20 minutes after the trials (p < 0.01). Conclusion: The effects of ultrasound were maintained for 20 minutes after the trial on intramuscular blood circulation and oxygen dynamics. These effects were caused by a combination of thermal and mechanical effects of the ultrasound.  相似文献   

8.
Ru(bipy)2dppx2+用作核酸作用方式光谱探针研究   总被引:2,自引:0,他引:2  
利用核酸分子“光开关”Ru(bipy)2dppx^2+对抗癌药物阿霉素(ADM)与DNA的作用方式进行了研究。Ru(bipy)2dppx^2+是以插入的方式与核酸作用,阿霉素对Ru(bipy)2dppx^2+-DNA体系荧光光谱和紫外-可见吸收光谱的影响均表明阿霉素是以插入的方式与核酸作用。阿霉素对Ru(bipy):dppx^2+-DNA体系Scatchard图的影响也表明阿霉素主要是以插入的方式与核酸作用。溴化乙锭(EB)常用于指示小分子与DNA作用方式研究,与其相比,Ru(bipy):dppx^2+具有灵敏度高、毒性低、稳定性好、选择性好、使用方便等优点。  相似文献   

9.
Xiang J  Xia X  Jiang Y  Leung AW  Wang X  Xu J  Wang P  Yu H  Bai D  Xu C 《Ultrasonics》2011,51(3):390-395

Objective

The present study aims to investigate apoptosis of ovarian cancer cells induced by methylene blue (MB)-mediated sonodynamic therapy (SDT).

Methods

The MB concentration was kept constant at 100 μM and ovarian cancer HO-8910 cells were exposed to ultrasound therapy for 5 s with an intensity of 0.46 W/cm2. The cytotoxicity was investigated 24 h after MB-mediated sonodynamic action. Apoptosis was analyzed using a flow cytometer with Annexin V-FITC and propidium iodine (PI) staining as well as fluorescence microscopy with Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured by flow cytometer with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) staining.

Results

The cytotoxicity of MB-mediated SDT on HO-8910 cells after MB-mediated SDT was significantly higher than those of other treatments including ultrasound alone, MB alone and sham treatment. Flow cytometric analysis showed a significant increase in the early and late apoptotic cell populations by MB-mediated SDT of HO-8910 cells. Nuclear condensation and increased ROS levels were also found in HO-8910 cells treated by MB-mediated SDT.

Conclusions

Our findings demonstrated that MB-mediated sonodynamic action significantly induced apoptosis of HO-8910 cells and an increase in intracellular ROS level. This indicates that apoptosis is an important mechanism of cell death induced by MB-mediated SDT. Thus, MB-mediated SDT might be a potential therapeutic strategy for combating ovarian cancer.  相似文献   

10.
Hou Z  Li L  Zhan C  Zhu P  Chang D  Jiang Q  Ye S  Yang X  Li Y  Xie L  Zhang Q 《Ultrasonics》2012,52(7):836-841
10-Hydroxycamptothecin (HCPT) loaded PLA microbubbles, used as an ultrasound-triggered drug delivery system, were fabricated by a double emulsion-solvent evaporation method. The obtained microbubbles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and confocal laser scanning microscope (CLSM). In addition, the effect of diagnostic ultrasound exposure on BEL-7402 cells combined with HCPT-loaded PLA microbubbles was evaluated using cytotoxicity assay, CLSM and flow cytometry (FCM). It was found that the HCPT-loaded PLA microbubbles showed smooth surface and spherical shape, and the drug was amorphously dispersed within the shell and the drug loading content reached up to 1.69%. Nearly 20% of HCPT was released upon exposure to diagnostic ultrasound at frequency of 3.5 MHz for 10 min. Moreover, HCPT fluorescence in the cells treated only with the HCPT-loaded PLA microbubbles was discernible, but less intense, while those treated with the microbubbles in conjunction with ultrasound exposure was evident and intense, indicating an increased cellular uptake of HCPT by ultrasound exposure. Cytotoxicity test on BEL-7402 cells indicated that the HCPT-loaded PLA microbubbles combined with ultrasound exposure were more cytotoxic than the microbubbles alone. The results suggest that the combination of drug loaded PLA microbubbles and diagnostic ultrasound exposure exhibit an effective intracellular drug uptake by tumor cells, indicating their great potential for antitumor therapy.  相似文献   

11.
The clinical use of the anticancer drug doxorubicin (DOX) is limited by strong side effects and phenomena of cell resistance. Drug targeting by binding DOX to nanoparticles could overcome these limitations. We recently described a method to associate DOX to superparamagnetic iron oxide nanoparticles (SPION) in view of magnetic drug targeting (Munnier et al. in Int J Pharm 363:170–176, 2008). DOX is bound to the nanoparticle surface through a pre-formed DOX–Fe2+ complex. The DOX-loaded SPION present interesting properties in terms of drug loading and biological activity in vitro. The purpose of this study is to explore the possible mechanisms of the in vitro cytotoxicity of DOX-loaded SPION. The uptake of SPION was followed qualitatively by conventional optical microscopy after Prussian blue staining and quantitatively by iron determination by atomic absorption spectroscopy. The subcellular distribution of intrinsically fluorescent DOX was followed by confocal spectral imaging (CSI) and the subsequent cytotoxicity by the MTT method. We reveal modifications of DOX intracellular interactions for SPION-delivered drug and increased cytotoxicity. These results are discussed in terms of internalization route of the drug and of a potential role of iron oxide nanoparticles in the observed cytotoxicity.  相似文献   

12.
Cancer chemotherapy suffers from drug resistance and side effects of the drugs. Combination therapies have been attracted attention to overcome these limitations of traditional cancer treatments. Recently, increasing in intracellular chemotherapeutic concentration in the presence of ultrasonic waves (US) has been shown in the preclinical stage. In addition, some recent studies have shown that nanoparticles increase the effectiveness of ultrasound therapy. In this study, the US-active property of gold nanocones (AuNCs) was utilized for combinational US and cisplatin (Cis) to overcome drug resistance. The effect of the triple combination therapy US + AuNCs + Cis with low-dose Cis on 2/3D models of cisplatin-resistant ovarian cancer cell line (A2780cis) were investigated. In the 2D cell culture, 60% of the A2780cis cell population was suppressed with triple combination therapy; and the long-term therapeutic efficacy of the US + AuNCs + Cis with the low-dose drug was demonstrated by suppressing 83% of colony formation. According to the results in the 3D cell model, 60% of the spheroid formation was suppressed by the triple combination therapy with low-dose Cis. These results not only demonstrate the success of the US + AuNCs + Cis triple combination therapy for its long-term therapeutic effect on resistant cancer cells but also verified that it might enable effective cancer therapy in vivo and clinical stages based on the 3D tumor models. In addition, enhanced anti-cancer activity was demonstrated at the low-dose Cis on drug-resistant cancer cells indicating the triple-combination therapy successfully overcame drug resistance and this is a promising strategy to reduce the side effects of chemotherapy. This work exhibits a novel US and AuNCs-mediated combination cancer therapy, which demonstrates the role of ultrasound-active AuNCs to combat drug resistance with low-dose chemotherapy.  相似文献   

13.
This study aimed at verifying the effects of phonophoresis associated with Arnica montana on the acute phase of an inflammatory muscle lesion. Forty Wistar male rats (300 ± 50 g), of which the Tibialis Anterior muscle was surgically lesioned, were divided into four groups (n = 10 each): control group received no treatment; the ultrasound group (US) was treated in pulsed mode with 1-MHz frequency, 0.5 W/cm2 intensity (spatial and temporal average – SATA), duty cycle of 1:2 (2 ms on, 4 ms off, 50%), time of application 3 min per session, one session per day, for 3 days; the phonophoresis or ultrasound plus arnica (US+A) group was treated with arnica with the same US parameters plus arnica gel; and the arnica group (A) was submitted to massage with arnica gel, also for 3 min, once a day, for 3 days. Treatment started 24 h after the surgical lesion. On the 4th day after lesion creation, animals were sacrificed and sections of the lesioned, inflamed muscle were removed for quantitative (mononuclear and polymorphonuclear cell count) and qualitative histological analysis. Collected data from the 4 groups were statistically analyzed and the significance level set at p < 0.05. Results show higher mononuclear cell density in all three treated groups with no significant difference between them, but values were significantly different (p < 0.0001) when compared to control group’s. As to polymorphonuclear cell density, significant differences were found between control group (p = 0.0134) and US, US+A and A groups; the arnica group presented lesser density of polymorphonuclear cells when compared (p = 0.0134) to the other groups. No significant difference was found between US and US+A groups. While the massage with arnica gel proved to be an effective anti-inflammatory on acute muscle lesion in topic use, these results point to ineffectiveness of Arnica montana phonophoresis, US having seemingly checked or minimized its anti-inflammatory effect.  相似文献   

14.
Antimicrobial photodynamic therapy (aPDT) is a non-pharmacological antimicrobial regimen based on light, photosensitizer and oxygen. It has become a potential method to inactivate multidrug-resistant bacteria. However, limited by the delivery of photosensitizer (PS) in biofilm, eradicating biofilm-associated infections by aPDT remains challenging. This study aimed to explore the feasibility of combining ultrasonic irradiation with aPDT to enhance the efficacy of aPDT against methicillin-resistant staphylococcus aureus (MRSA) biofilm. A cationic benzylidene cyclopentanone photosensitizer with much higher selectivity to bacterial cells than mammalian cells were applied at the concentration of 10 μM. 532 nm laser (40 mW/cm2, 10 min) and 1 MHz ultrasound (500 mW/cm2, 10 min, simultaneously with aPDT) were employed against MRSA biofilms in vitro. In addition to combined with ultrasonic irradiation and aPDT, MRSA biofilms were treated with laser irradiation only, photosensitizer only, ultrasonic irradiation only, ultrasonic irradiation and photosensitizer, and aPDT respectively. The antibacterial efficacy was determined by XTT assay, and the penetration depth of PS in biofilm was observed using a photoluminescence spectrometer and a confocal laser scanning microscopy (CLSM). In addition, the viability of human dermal fibroblasts (WS-1 cells) after the same treatments mentioned above and the uptake of P3 by WS-1 cells after ultrasonic irradiation were detected by CCK-8 and CLSM in vitro. Results showed that the percent decrease in metabolic activity resulting from the US + aPDT group (75.76%) was higher than the sum of the aPDT group (44.14%) and the US group (9.88%), suggesting synergistic effects. Meanwhile, the diffusion of PS in the biofilm of MRSA was significantly increased by 1 MHz ultrasonic irradiation. Ultrasonic irradiation neither induced the PS uptake by WS-1 cells nor reduced the viability of WS-1 cells. These results suggested that 1 MHz ultrasonic irradiation significantly enhanced the efficacy of aPDT against MRSA biofilm by increasing the penetration depth of PS. In addition, the antibacterial efficacy of aPDT can be enhanced by ultrasonic irradiation, the US + aPDT treatment demonstrated encouraging in vivo antibacterial efficacy (1.73 log10 CFU/mL reduction). In conclusion, the combination of aPDT and 1 MHz ultrasound is a potential and promising strategy to eradicate biofilm-associated infections of MRSA.  相似文献   

15.

Objectives

Curcumin, a natural pigment from the traditional Chinese herb, has shown promise as an efficient enhancer of ultrasound. The present study aims to investigate ultrasound-induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin in vitro.

Methods

Nasopharyngeal carcinoma cell line CNE2 cells were incubated by 10 μm curcumin and then were treated by ultrasound for 8 s at the intensity of 0.46 W/cm2. Cytotoxicity was evaluated using MTT assay and light microscopy. Mitochondrial damage was analyzed using a confocal laser scanning microcopy with Rhodamine 123 and ultrastructural changes were observed using a transmission electron microscopy (TEM).

Results

MTT assay showed that cytotoxicity induced by ultrasound treatment alone and curcumin treatment alone was 18.16 ± 2.37% and 24.93 ± 8.30%, respectively. The cytotoxicity induced by the combined treatment of ultrasound and curcumin significantly increased up to 86.67 ± 7.78%. TEM showed that microvillin disappearance, membrane blebbing, chromatin condensation, swollen mitochondria, and mitochondrial myelin-like body were observed in the cells treated by ultrasound and curcumin together. The significant collapse of mitochondrial membrane potential (MMP) was markedly observed in the CNE2 cells after the combined treatment of curcumin and ultrasound.

Conclusions

Our findings demonstrated that ultrasound sonication in the presence of curcumin significantly killed the CNE2 cells and induced ultrastructural damage and the dysfunction of mitochondria, suggesting that ultrasound treatment remarkably induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin.  相似文献   

16.
Su S  Guo W  Yi C  Leng Y  Ma Z 《Ultrasonics sonochemistry》2012,19(3):469-474
Degradation of the antibiotics amoxicillin in aqueous solution using sulphate radicals under ultrasound irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with only oxone (2KHSO5·KHSO4·K2SO4), cobalt activated oxone (oxone/Co2+), oxone + ultrasonication (oxone/US) and cobalt activated oxone + ultrasonication (oxone/Co2+/US). The chemical oxygen demand (COD) removal efficiency were in the order of oxone < oxone/Co2+ < oxone/US < oxone/Co2+/US for the amoxicillin solution. The variables considered for the effect of degradation were the temperature, the power of ultrasound, the concentration of oxone, as well as catalyst and the initial amoxicillin concentration. More than 98% of COD removal was achieved within 60 min under optimum operational conditions. Comparative analysis revealed that the sulfate radicals had the high oxidation potential and the use of ultrasound irradiation reduced the energy barrier of the reaction and increased the COD removal efficiency of organic pollutants. The degradation of amoxicillin follows the first-order kinetics.  相似文献   

17.
Owing to its higher concentration in cancer cells than that in the corresponding normal cells, glutathione (GSH) provides an effective and flexible mechanism to design drug delivery systems. Here a novel GSH‐responsive mesoporous silica nanoparticle (MSN) is reported for controlled drug release. In this system, manganese dioxide (MnO2) nanostructure, formed by the reduction of KMnO4 on the surface of carboxyl‐functionalized MSN can block the pores (MSN@MnO2). By a redox reaction, the capped MnO2 nanostructure can dissociate into Mn2+ in the presence of GSH molecules. The blocked pores are then uncapped, which result in the release of the entrapped drugs. As a proof‐of‐concept, doxorubicin (DOX) as model drug is loaded into MSN@MnO2. DOX‐loaded MSN@MnO2 shows an obvious drug release in 10 × 10?3 m GSH, while no release is observed in the absence of GSH. In vitro studies using human hepatocellular liver carcinoma cell line (HepG2) prove that the DOX‐loaded MSN@MnO2 can entry into HepG2 cells and efficiently release the loaded DOX, leading to higher cytotoxicity than to that of human normal liver cells (L02). It is believed that further developments of this GSH‐responsive drug delivery system will lead to a new generation of nanodevices for intracellular controlled delivery.  相似文献   

18.
This work reports an efficient and straightforward strategy to fabricate hybrid microsized containers with reduction‐sensitive and ultrasound‐responsive properties. The ultrasound and reductive sensitivity are visualized using scanning electron microscopy, with the results showing structural decomposition upon ultrasound irradiation and in the presence of reducing agent. The ultrasound‐responsive functionalities of hybrid carriers can be used as external trigger for rapid controlled release, while prolonged drug release can be achieved in the presence of reducing agent. To evaluate the potential for targeted drug delivery, hybrid microsized containers are loaded with the anticancer drug doxorubicin (Dox). Such hybrid capsules can undergo structural intracellular degradation after cellular uptake by human cervical cancer cell line (HeLa), resulting in Dox release into cancer cells. In contrast, there is no Dox release when hybrid capsules are incubated with human mesenchymal stem cells (MSCs) as an example of normal human cells. The cell viability results indicate that Dox‐loaded capsules effectively killed HeLa cells, while they have lower cytotoxicity against MSCs as an example of healthy cells. Thus, the newly developed intracellular‐ and ultrasound‐responsive microcarriers obtained via sol‐gel method and layer‐by‐layer technique provide a high therapeutic efficacy for cancer, while minimizing adverse side effect.  相似文献   

19.
An investigation was conducted into the utilization of treatments combining ultrasound and lysozyme (US + Lys) to deactivate Salmonella typhimurium (S. typhimurium) in the liquid whole egg (LWE). Furthermore, US + Lys and heat treatment (HT) with a similar microbial inactivation effect were comparatively evaluated by examining their impact on the quality attributes of LWE. The LWE was treated with US at 35–45 °C and 605–968 W/cm2 for 5–35 min, and with HT at 58–64 °C for 3–4 min. Lysozyme (Lys) alone achieved a minimal degree of inactivation in S. typhimurium, while it was enhanced with the application of US alone when the treatment temperature, time, and energy were increased. Furthermore, US and US + Lys caused a reduction of 3.31 and 4.26 log10 cycles in S. typhimurium, respectively at 968 W/cm2 and 35 °C for 20 min, indicating a synergistic relationship between US and Lys for the effective inactivation of S. typhimurium. Similarly, HT and HT + Lys achieved a reduction of 4.10 and 4.75 log10 cycles at 64 °C/3 min, respectively. The L* and b* values of the LWE following US and US + Lys application were significantly higher than untreated and heat-treated LWE, indicating that US treated LWE had a brighter and yellower appearance. The protein solubility (PS) slightly decreased after all treatments, while the pH increased. Furthermore, the foaming capacity (FC) and foam stability (FS) were decreased, revealing that LWE had a lower FC and unstable foam after all treatments. Therefore, US and US + Lys could increase the viscosity and gelation temperature (Tg) of LWE, indicating that LWE exhibited higher heat resistance after US treatment. These results indicated that US + Lys might be a promising pasteurization technology in the processing of LWE.  相似文献   

20.
This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose–response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号