首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The gas-phase oxidations of phenol, anisol, thiophenol, and thioanisol by 'bare' FeO+ are examined by using Fourier transform-ion cyclotron resonance (FT-ICR) and tandem mass-spectrometry. Reaction mechanisms are derived on the basis of isotope-labeling experiments, MS/MS studies, and comparison with structural isomers, that is ions formed by independent routes. The chemistry of all substrates is determined by the functional groups, whereas reactions typical of unsubstituted benzene with FeO+ are suppressed. For phenol and thiophenol, four-membered metallacycles are obtained concomitant with a regioselective loss of water, which involves the O atom from the FeO+ entity and hydrogen atoms originating from the functional group and from the ortho position of the ring. C-H bond cleavage of the methoxy group (kH/kD = 2.0) is rate-contributing for the degradation of metastable anisol/FeO+, which is featured by highly regioselective losses of H2O, HCO, H2CO, and [C,H2,O2]. In the oxidation of thioanisol, two different C-H bond activation mechanisms are operating, resulting in the elimination of [Fe,H,O,S] concomitant with the formation of the benzyl cation (kH/kD = 4.7), and loss of water (kH/kD = 2.5). The reactions of independently generated, formal S- and C-oxidation intermediates of thioanisol indicate the occurrence of extensive structural isomerizations prior to dissociation. For anisol and thioanisol, analogies and differences between oxidation reactions catalyzed by the enzyme cytochrome P-450 in the condensed phase and those observed for the gas-phase model FeO+ are discussed.  相似文献   

2.
The selective oxidation of C-H bonds and the use of O(2) as a stoichiometric oxidant represent two prominent challenges in organic chemistry. Copper(II) is a versatile oxidant, capable of promoting a wide range of oxidative coupling reactions initiated by single-electron transfer (SET) from electron-rich organic molecules. Many of these reactions can be rendered catalytic in Cu by employing molecular oxygen as a stoichiometric oxidant to regenerate the active copper(II) catalyst. Meanwhile, numerous other recently reported Cu-catalyzed C-H oxidation reactions feature substrates that are electron-deficient or appear unlikely to undergo single-electron transfer to copper(II). In some of these cases, evidence has been obtained for the involvement of organocopper(III) intermediates in the reaction mechanism. Organometallic C-H oxidation reactions of this type represent important new opportunities for the field of Cu-catalyzed aerobic oxidations.  相似文献   

3.
The synthesis of intrinsic flame retardant copolymer by copolymerization with reactive flame retardants is the most potential method to prepare transparent and flame retardant poly (methyl methacrylate) (PMMA) at present,but the main challenge of this method is that the copolymer usually has poor mechanical properties and heat resistance. In this work, the hydrogen bond enhancement strategy is adopted, and the flame retardant PMMA with excellent comprehensive properties is obtained by ternary copolymerization with methyl methacrylate (MMA) as matrix unit, diethyl (methacryloyloxymethyl) phosphonate (DEP) as flame retardant unit and methacrylamide (MAA) as hydrogen bond unit. Due to the formation of intermolecular hydrogen bond via MAA unit, the storage modulus, flexural strength and impact strength of the terpolymer containing 15 mol% MAA are 48%, 19%, and 24% higher than those of the copolymer of MMA and DEP, and its hardness, glass transition temperature and load thermal deformation temperature (increased by 7°C) are also superior. Moreover, owing to the gas-phase dilution and charring flame retardancy of MAA unit, the terpolymer shows increased limiting oxygen index (24.3%) and UL94 rating (V-1). This work not only provides a promising flame retardant PMMA for practical application, but also offers a new strategy to design flame retardant polymers with good mechanical properties.  相似文献   

4.
Electron paramagnetic resonance (EPR) spectroscopy of reactive superoxo-vanadium(V) species in vanadosilicate molecular sieves (microporous VS-1 and mesoporous V-MCM-41) generated on contact with H2O2, tert-butyl hydroperoxide (TBHP), or (H2+O2) is reported for the first time. By suitable choice of the silicate structure, solvent, and oxidant, we could control the vanadium-(O2-*) bond (i.e., the V-O bond) covalency, the mode of O-O cleavage (in the superoxo species), and, therefore, chemoselectivity in the oxidation of n-hexane: Oxidation by TBHP over V-MCM-41, for example, yielded 27.2% of (n-hexanol+n-hexanal+n-hexanoic acid), among the highest chemoselectivities for oxidation of the terminal -CH3 in a linear paraffin reported to date. Over these vanadosilicates, oxidation of the primary C-H bond occurs only via a homolytic O-O bond cleavage; the secondary C-H bond oxidations may proceed via both the homo- and heterolytic O-O cleavage mechanisms.  相似文献   

5.
The energy and geometry of the transition state in reactions of the ethyl peroxyl radical with ethane, ethanol (its α and β C-H bonds), acetone, butanone-2, and acetaldehyde were calculated by the density functional theory method. In all these reactions (except EtO2/? + ethanol α C-H bond), the C…H…O reaction center has an almost linear configuration (φ = 176° ± 2°); polar interaction only influences the r (C…O) interatomic bond. In the reaction of EtO2/? with the ethanol α C-H bond, it is the O-H…O H-bond formed in the transition state that determines the configuration of the reaction center with the angle φ(C…H…O) = 160°. The results were used to estimate the r (C…H) and r (O…H) interatomic bonds in the transition state by the method of intersecting parabolas and the contribution of polar interaction to the activation energy of reactions between peroxyl radicals and aldehydes and ketones.  相似文献   

6.
A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of -4.4 in the oxidation of para-substituted thioanisoles.  相似文献   

7.
Anaerobic oxidations of 9,10-dihydroanthracene (DHA), xanthene, and fluorene by [(bpy)(2)(py)Ru(IV)O](2+) in acetonitrile solution give mixtures of products including oxygenated and non-oxygenated compounds. The products include those formed by organic radical dimerization, such as 9,9'-bixanthene, as well as by oxygen-atom transfer (e.g., xanthone). The kinetics of these reactions have been measured. The kinetic isotope effect for oxidation of DHA vs DHA-d(4) gives k(H)/k(D) > or = 35 +/- 1. The data indicate a mechanism of initial hydrogen-atom abstraction forming radicals that dimerize, disproportionate and are trapped by the oxidant. This mechanism also appears to apply to the oxidations of toluene, ethylbenzene, cumene, indene, and cyclohexene. The rate constants for H-atom abstraction from these substrates correlate well with the strength of the C-H bond that is cleaved. Rate constants for abstraction from DHA and toluene also correlate with those for oxygen radicals and other oxidants. The rate constant for H-atom transfer from toluene to [(bpy)(2)(py)Ru(IV)O](2+) appears to be close to that predicted by the Marcus cross relation, using a tentative rate constant for hydrogen atom self-exchange between [(bpy)(2)(py)Ru(III)OH](2+) and [(bpy)(2)(py)Ru(IV)O](2+).  相似文献   

8.
Oxidations of the NADH analogues 10-methyl-9,10-dihydroacridine (AcrH2) and N-benzyl 1,4-dihydronicotinamide (BNAH) by cis-[RuIV(bpy)2(py)(O)]2+ (RuIVO2+) have been studied to probe the preferences for hydrogen-atom transfer vs hydride transfer mechanisms for the C-H bond oxidation. 1H NMR spectra of completed reactions of AcrH2 and RuIVO2+, after more than approximately 20 min, reveal the predominant products to be 10-methylacridone (AcrO) and cis-[RuII(bpy)2(py)(MeCN)]2+. Over the first few seconds of the reaction, however, as monitored by stopped-flow optical spectroscopy, the 10-methylacridinium cation (AcrH+) is observed. AcrH+ is the product of net hydride removal from AcrH2, but hydride transfer cannot be the dominant pathway because AcrH+ is formed in only 40-50% yield and its subsequent oxidation to AcrO is relatively slow. Kinetic studies show that the reaction is first order in both RuIVO2+ and AcrH2, with k = (5.7 +/- 0.3) x 10(3) M(-1) s(-1) at 25 degrees C, DeltaH(double dagger) = 5.3 +/- 0.3 kcal mol(-1) and DeltaS(double dagger) = -23 +/- 1 cal mol(-1) K(-1). A large kinetic isotope effect is observed, kAcrH2/kAcrD2 = 12 +/- 1. The kinetics of this reaction are significantly affected by O2. The rate constants for the oxidations of AcrH2 and BNAH correlate well with those for a series of hydrocarbon C-H bond oxidations by RuIVO2+. The data indicate a mechanism of initial hydrogen-atom abstraction. The acridinyl radical, AcrH*, then rapidly reacts by electron transfer (to give AcrH+) or by C-O bond formation (leading to AcrO). Thermochemical analyses show that H* and H- transfer from AcrH2 to RuIVO2+ are comparably exoergic: DeltaG degrees = -10 +/- 2 kcal mol(-1) (H*) and -6 +/- 5 kcal mol(-1) (H-). That a hydrogen-atom transfer is preferred kinetically suggests that this mechanism has an equal or lower intrinsic barrier than a hydride transfer pathway.  相似文献   

9.
用从头计算方法在MP2 /6 31G(d)水平上研究了CX2 (X =H ,F ,Cl)与甲基异丙基醚的C -H键插入反应。CCl2 与甲基异丙基醚两个不同的α C的C -H键插入势垒分别为 117.2kJ/mol (甲基 )和 2 0 .6kJ/mol (异丙基 )。CF2 与异丙基α C的C -H键上插入势垒为 12 0 .0kJ/mol,在插入甲基上C -H键时会引起C -O键的断裂。CH2 的插入反应则不需要势垒。对CX2 与二甲醚、甲乙醚、甲基异丙基醚、甲基苄基醚上各种不同的C -H键插入势垒进行了比较 ,甲基和苯基都促使其毗邻的C -H键更容易被CX2 所插入  相似文献   

10.
High molecular weight powdery polyacrylonitrile (PAN) polymers were prepared by aqueous suspension polymerization employing itaconic acid (IA) as comonomer and alpha,alpha(')-azobisisobutyronitrile (AIBN) as initiator at 60 degrees C. PAN polymers obtained with different monomer ratios were characterized by EA, DSC, FTIR and XRD. It is investigated that the oxygen element content in PAN polymers increased with the increase of required IA amounts in the feed and heat-treatment temperatures. DSC curves of PAN copolymers exhibited the triplet character, owing to the exothermic cyclization and oxidative reactions during heat-treatment process. Introduction of IA in the feed relaxed exothermic reactions of PAN polymers under air atmosphere. Structure and crystallinity changes were affected by required IA amounts in the feed and enhancement of heat-treatment temperatures. The characteristic functional groups (including C[triple bond]N, C=O, CH(2)) presented in FTIR spectra of PAN polymers indicated copolymerization reaction of AN and IA. Existence of some organic groups (C-O, C=C and/or C=N) indicated formation of ladderlike structure during heat-treatment process. PAN homopolymer had the better crystallinity (mainly peak intensity and peak area around 2theta = 17 degrees) than most RT-PAN copolymers. When heat-treatment temperature is around 210 degrees C, peak intensity, peak area, L(c) and CI of HT-PAN polymers corresponding to samples 1# and 2# got maxima, while crystallinity became weak at higher heat-treatment temperatures.  相似文献   

11.
Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy at ~23 °C was used to study reactions of NO(2) on γ-Al(2)O(3) particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al(2)O(3) were also studied. In both cases, the particles were exposed to water vapor prior to NO(2) to provide adsorbed water for reaction. As expected, surface-bound HONO, NO(2)(-), and NO(3)(-) were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R(2)C[double bond, length as m-dash]NO(2)(-)). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO(2), and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.  相似文献   

12.
The hybrid density functional method B3LYP was used to study the mechanism of the hydrocarbon (methane, ethane, methyl fluoride, and ethylene) oxidation reaction catalyzed by the complexes cis-(H(2)O)(NH(2))Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(NH(2))(H(2)O), I, and cis-(HCOO)(Imd)Fe(mu-O)(2)(eta(2)-HCOO)(2)Fe(Imd)(HCOO) (Imd = Imidazole), I_m, the "small" and "medium" model of compound Q of the methane monooxygenase (MMO). The improvement of the model from "small" to "medium" did not change the qualitative conclusions but significantly changed the calculated energetics. As in the case of methane oxidation reported by the authors previously, the reaction of all the substrates studied here is shown to start by coordination of the substrate molecule to the bridging oxygen atom, O(1) of I, an Fe(IV)-Fe(IV) complex, followed by the H-atom abstraction at the transition state III leading to the bound hydroxy alkyl intermediate IV of Fe(III)-Fe(IV) core. IV undergoes a very exothermic coupling of alkyl and hydroxy groups to give the alcohol complex VI of Fe(III)-Fe(III) core, from which alcohol dissociates. The H(b)-atom abstraction (or C-H bond activation) barrier at transition state III is found to be a few kcal/mol lower for C(2)H(6) and CH(3)F than for CH(4). The calculated trend in the H(b)-abstraction barrier, CH(4) (21.8 kcal/mol) > CH(3)F (18.8 kcal/mol) > or = C(2)H(6) (18.5 kcal/mol), is consistent with the C-H(b) bond strength in these substrates. Thus, the weaker the C-H(b) bond, the lower is the H(b)-abstraction barrier. It was shown that the replacement of a H-atom in a methane molecule with a more electronegative group tends to make the H(b)-abstraction transition state less "reactant-like". In contrast, the replacement of the H-atom in CH(4) with a less electronegative group makes the H(b)-abstraction transition state more "reactant-like". The epoxidation of ethylene by complex I is found to proceed without barrier and is a highly exothermic process. Thus, in the reaction of ethylene with complex I the only product is expected to be ethylene oxide, which is consistent with the experiment.  相似文献   

13.
Partial oxidation of propene is promoted by Au following deposition of atomic oxygen (0.3 ML) via O3 decomposition on Au(111) at 200 K. Several partial oxidation products--acrolein, acrylic acid, and carbon suboxide (O=C=C=C=O)-are produced in competition with combustion to CO2 and H2O. Acrolein is the primary partial oxidation product, and it is further oxidized to the other products by excess oxygen. We propose that acrolein is derived from allyloxy intermediate that is formed via insertion of oxygen into the allylic C-H bond. While no propene epoxide formation is detected from oxidation of C3H6, a small amount of epoxidation is observed during reaction of C3D6 and CD3CH=CH2. These results are strong indications that small changes in the energy required for allylic C-H activation, in this case due to a kinetic isotope effect, may dramatically change the selectivity; thus, small modifications of the properties of oxygen on Au may lead to the more desirable epoxidation process. Our results are discussed in the context of the origin of activity of Au-based catalysts.  相似文献   

14.
Recent progress in the development of flavin-catalyzed oxidations and related reactions is described with respect to scope, limitation, and reaction mechanism. The 4a-hydroperoxyflavins, which are the most simplified model compounds of flavoenzymes, act as catalytically active species for the oxidation of organic substrates with the help of H(2)O(2) or O(2) as a mild oxidant. This principle behind the simulation of flavoenzymes led to the discovery of a variety of environmentally benign, oxidative transformations of secondary amines to nitrones, tertiary amines to N-oxides, sulfides to sulfoxides, and Baeyer-Villiger oxidations of ketones. Asymmetric oxidation of sulfides can also be performed with several chiral flavin catalysts. One of the fortunate outcomes of this study is the development of an environmentally friendly ("green") method for the "aerobic hydrogenation" of olefins, which is achieved by in situ generation of diimide with the aid of the flavin-catalyzed oxidation of hydrazine under an O(2) atmosphere.  相似文献   

15.
Abstract

Certain complexes of some transition metal cations in the high oxidation state could oxidize some organic substrates with labile C-H moieties, leading to the corresponding cations in the lower" oxidation state and some carbon-centered radicals. The former would form oxidative complexes with molecular dioxygen to continuously oxidize organic substrates, while the latter would initiate polymerization of vinylic monomers. Such catalytic oxidation is adopted to initiate radical polymerization of methyl methacrylate (MMA) and styrene (St) with cyclohexanone (CyHO) and benzylic hydrocarbons as both the solvent and the substrate. Although, a large array of complexes could trigger the polymerization, CuII/2,2′-bipyridine complexes display a maximum turnover frequency above 200?h–1 during the catalytic aerobic radical polymerization of MMA in CyHO at 70–80?°C, but only less than 0.4% of CyHO is involved in chain formatting. CuII/ligand-catalyzed aerobic radical polymerization of St in CyHO exhibit comparable behaviors. Only CoII complexes could catalyze the aerobic radical polymerization of MMA in para-xylene and cumene at 90?°C, but only 0.1% of PX and 0.3% of cumene are involved in chain forming.  相似文献   

16.
The secondary reactions of the oxidation and thermal transformations of gamma irradiated (at 77 K) and plasticized (with water) cellulose radicals were studied by 3 cm-and 2 mm-band EPR spectroscopy. The radiolysis of cotton cellulose was found to produce the H-C*=O formyl radical, and heating the irradiated samples to 190–200 K resulted in the formation of the ROO* peroxide radical. The EPR spectra of microcrystalline cellulose recorded at room temperature contained an individual triplet (α β H = 2.5–2.7 mT) with an additional quadruplet structure (splitting 0.5–0.7 mT) from three γ-hydrogens. This triplet was interpreted as a signal of the primary radical at C4. The main direction of thermal transformations of primary radicals was synchronous reactions of the dehydration of the polycarbohydrate complex accompanied by the dissociation of the C-H, C-OH, and C-C bonds and elimination of H2O, H2, CO, and CO2 with successive formation of allyl and then polyene radicals, which were a source of the growth of polyconjugated systems in macromolecules.  相似文献   

17.
Efficient methods for dioxirane-based selective C-H bond oxidation by supramolecular control in H(2)O have been developed. With β-cyclodextrin as the supramolecular host, site-selective oxidation of the terminal over the internal tertiary C-H bond of 3,7-dimethyloctyl esters 3a-c was achieved. In addition, β-cyclodextrin selectively enhanced the C-H bond oxidation of cumene in a mixture of cumene and ethyl benzene in H(2)O. Through (1)H NMR studies, the selectivity in C-H bond oxidation could be attributed to the inclusion complex formation between β-cyclodextrin and the substrates.  相似文献   

18.
The complete structural characterization of a copolymer composed of methacrylic acid (MAA) and methyl methacrylate (MMA) units was achieved using tandem mass spectrometry. In a first step, collision‐induced dissociation (CID) of sodiated MAA‐MMA co‐oligomers allowed us to determine the co‐monomeric composition, the random nature of the copolymer and the sum of the end‐group masses. However, dissociation reactions of MAA‐based molecules mainly involve the acidic pendant groups, precluding individual characterization of the end groups. Therefore, methylation of all the acrylic acid moieties was performed to transform the MAA‐MMA copolymer into a PMMA homopolymer, for which CID mainly proceeds via backbone cleavages. Using trimethylsilyldiazomethane as a derivatization agent, this methylation reaction was shown to be complete without affecting the end groups. Using fragmentation rules established for PMMA polymers together with accurate mass measurements of the product ions and knowledge of reagents used for the studied copolymer synthesis, a structure could be proposed for both end groups and it was found to be consistent with signals obtained in nuclear magnetic resonance spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The tetrabutylammonium salts of ionic organo-initiator containing N,N'-diisopropylthiourea (TUA-1) or N,N'-diethylthiourea (TUA-2) serve as inexpensive initiators for the anionic polymerization of methyl methacrylate (MMA) at room temperature. The molecular weights of obtained polymers are in the range of 1500–22,700 g mol−1 and the molecular weight distributions are fairly broad (Đ = 1.9–2.5) in optimized cases. The molar ratio of monomer to initiator can be achieved up to 800. Side-reactions, for example, backbiting, transfer reactions result in the polymerization being a non-living manner, thus leading to broad molecular weight distributions of the resulting polymers. The effects of counterion nature were also studied from the polymerization of MMA using TUA-1 anion with sodium or potassium salts as counterions under identical conditions. Detailed investigation indicates that the polymerization proceeds via a sulfur anion initiated repeated 1,4-Machael addition. In general, thioimidate initiators induced MMA polymerization feature certain induction periods, which is ascribed to slow addition thioimidate to CC double bond of MMA as a result of low initiator efficiency.  相似文献   

20.
Oxygenation of C-H and C=C bonds of hydrocarbons with H2O2 and O2 is an important industrial method to convert mineral oil into useful chemicals. Despite their enormous economic impact, these reactions are still not fully understood. In the early 1970s, the potential of Rh and Ir complexes for olefin oxygenation was investigated intensively. Simple inorganic salts of these metals proved to be rather useless for industrial application when compared with the traditional Wacker system. However, the appropriate choice of ligands allows the stepwise oxidation of olefins at Rh and Ir. These systems are therefore useful to study mechanistic details of substrate binding and C-O bond formation at the catalytic metal center. Insight from these model studies helps in understanding the catalytic reactions at these (and possibly other) metal centers. Further insight into the differences between the Rh system and traditional Wacker-type oxidation at Pd may lead to useful applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号