首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The geometries of three hydrogen-bonded dimers of hydroxylamine have been optimized, at the MP2 level of theory, using the 6-31G** basis set. These calculations yielded three separate local minima on the dimer potential energy surface. The interaction energies of these three species have been calculated, and corrected for basis set superposition error. The infrared band wavenumbers and intensities have been computed, and the monomer-dimer wavenumber shifts and intensity enhancements rationalized in terms of the types and strengths of hydrogen bonds present. The predicted wavenumbers have been correlated with those measured in a recent matrix isolation spectroscopic study, and an argument for the structure of the preferred dimer has been presented.  相似文献   

2.
An ab initio method has been used to perform quantum mechanical calculations of the formation energy of different conformers of benzophenone: planar molecule, twisted molecule, planar molecule dimer, twisted molecule dimer; electronic and vibrational spectra of these conformers were also obtained. An assessment of the medium (solvent) influence on the optimal geometry, dipole moment and stability of different forms of benzophenone was performed in the self-consistent reaction field approximation. It is shown that the twisted conformer is more stable than the planar one (the difference of free energies is 32 kJ/mol for free molecules) and it becomes even more stable with the increase in solvent polarity. The calculated electronic and vibrational spectra agree well with the experimental data and properly reflect the complication of the vibrational spectrum when passing from the gaseous phase to the condensed state of benzophenone. The difference between spectral properties of the two dimer forms allows their identification from the spectra and qualitative explanation of the observed peculiarities of phosphorescence of the amorphous phase of benzophenone by the stabilization of different conformers.  相似文献   

3.
Ab initio calculations ofp-dichlorobenzene molecule were carried out using the Hartree-Fock method in the 6–31 G* valence-split basis set. The molecule was also calculated by the MNDO method in the valence sp-basis set for comparison. The populations of the valent p-orbitals of the C and CI atoms were analyzed. The optimized geometry of the molecule as well as its35Cl NQR frequency and the asymmetry parameter of the electric field gradient at the35CI nuclei calculated using the populations of the less diffuse components of the valent p-orbitals of the Cl atoms are in agreement with the corresponding experimental values for the -modification of 1,4-Cl2C6H4.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2177–2179, September, 1996.  相似文献   

4.
Summary The dynamic crystal field operators, corresponding to the normal point-charge displacements in an octahedral complex are analyzed in detail. The strict equivalence of absolute versus relative coordinate treatments is established. The resulting formalism is applied to the intensity distribution in the vibronic side bands of the sharp line luminescence spectra ofd 3 complexes. Thereby special attention is given to the role of spin-orbit coupling and to the elastic properties of the molecular force field. Using the closure procedure, the relative intensities of the side bands may be expressed in terms of a single dynamic crystal field parameter. These expressions provide a simple rationalization of the observed vibronic selection rules, entirely within the framework of dynamic crystal field theory.  相似文献   

5.
The35Cl nuclear quadrupole resonance spectra ofp-dichlorobenzene in several clathrates are reported in the temperature range 77 K to room temperature. The information provided by this technique as to the nature of the guest-host interactions is discussed in the light of these results and it is concluded that NQR represents a useful technique in this context.  相似文献   

6.
Ab initio calculations of both ClCH2OCH3 and ClCH2CH3 molecules and various ClCH2OCH3 structures with fixed angles of rotation of the methoxy group about the C−O bond were performed by the restricted Hartree-Fock method in the valence-split 6–31 G* basis set with full optimization of the geometry. The populations of the valent p-orbitals of the chlorine atoms in these molecules have been analyzed. The35Cl NQR frequencies and the asymmetry parameters of the electric field gradient (EFG) at the35Cl nuclei have been calculated. Good agreement with experimental NQR frequencies was obtained for the calculations where only the populations of the less diffuse 3p-components of these orbitals were used. The35Cl NQR frequency in ClCH2OCH3 is lower than that in ClCH2CH3 due to the higher population of the less diffuse component of the pσ-orbital of the Cl atom in the former molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 431–434, March, 1997.  相似文献   

7.
The far-infrared spectrum of gaseous fluoromethyl methyl ether, FCH2OCH3, along with three of the deuterium isotopes, has been recorded at a resolution of 0.10 cm–1 in the 350 to 50 cm–1 region. The fundamental asymmetric torsional and methyl torsional modes are extensively mixed and have been observed at 182 and 132 cm–1, respectively, for the stablegauche conformer with the lower frequency band having several excited states falling to lower frequency. An estimate is given for the potential function governing the asymmetric rotation. On the basis of a one-dimensional model the barrier to internal rotation of the methyl moiety is determined to be 527±9 cm–1 (1.51±0.03 kcal/mol). A complete assignment of the vibrational fundamentals for all four isotopic species observed from the infrared (3500 to 50 cm–1) spectra of the gas and solid and from the Raman (3200 to 10 cm–1) spectra of the gas, liquid, and solid is proposed. No evidence could be found in any of the spectra for the high-energytrans conformer. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing the 3-21G and 6-31G* basis sets along with the 6-31G* basis set with electron correlation at the MP2 level. Additionally, completer 0 geometries have been determined from the previously reported microwave data and carbon-hydrogen distances determined from infrared studies. The heavy-atom structural parameters (distances in Å, angles in degrees) arer(C1-F) = 1.395 ± 0.005;r(C1-O) = 1.368 ± 0.007;r(C2-O) = 1.426 ±0.003; FC1O = 111.33 ± 0.25; C1OC2 = 113.50 ± 0.18 and dih FC1OC2 = 69.12 ± 0.26. All of these results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

8.
An ab initio potential energy surface for the Ar--OCS dimer was calculated using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)] with a large basis set containing bond functions. The interaction energies were obtained by the supermolecular approach with the full counterpoise correction for the basis set superposition error. The CCSD(T) potential was found to have two minima corresponding to the T-shaped and the collinear Ar--SCO structures. The two-dimensional discrete variable representation method was employed to calculate the rovibrational energy levels for five isotopomers Ar--OCS, Ar--OC34S, Ar--O13CS, Ar--18OCS, and Ar--17OCS. The calculated pure rotational transition frequencies for the vibrational ground state of the five isotopomers are in good agreement with the observed values. The corresponding microwave spectra show that the b-type transitions (Delta Ka = +/-1) are significantly stronger than the a-type transitions (Delta Ka = 0). Minimum-energy structures of the Ar2--OCS trimer were been determined with MP2 optimization, whereas the minimum-energy structures of the Arn--OCS clusters with n = 3-14 were obtained with the pairwise additive potentials. It was found that there are two minima corresponding to one distorted tetrahedral structure and one planar structure for the ternary complex. The 14 nearest neighbor Ar atoms form the first solvation shell around the OCS molecule.  相似文献   

9.
The harmonic vibrational force fields and the IR spectrum of XSO2NCO (X= F, C1) molecules have been studied usingab initio HF/SCF method with the 6-31G’ basis set. Theab initio harmonic force fields are scaled empirically using the scaled quantum mechanical (SQM) method of Pulay. A set of scale factors are optimized by the least-squares fitting to the experimental frequencies of FSO2NCO and then are transferred to CISO2NCO to give ana priori prediction of its fundamental frequencies. The average deviations between the theoretical frequencies and the experimental values for FSO2NCO and C1SO2NCO are 3 and 5 cm-1, respectively. The assignments of the fundamentals for these two molecules are also made atcording to the potential energy distributions and theab initio IR intensities Project supported by the National Natural Science Foundation of China (Grant No. 29673029)  相似文献   

10.
Quantum-chemical calculations have been carried out by the RHF/6-31G(d) and MP2/6-31+G(d) methods of molecules of N-chloromethylpyrrolidone, N-chloromethylcaprolactam, N-chloromethyl-succinimide, and N-chloromethylphthalimide with full optimization of their geometry, and also N-chloromethylpyrrolidone molecule by the RHF/6-31G(d) method at various angles of rotation of the CH2Cl group around the C―N bond. It was shown that the lower frequencies of the 35Cl NQR of the first two molecules in comparison with the later are mainly determined by the high populations of the p σ -orbitals of their Cl atoms. The population of the orbitals of the unshared electron pair of the N atom is practically unchanged on rotating the CH2Cl group, but the N atom polarizes the C―Cl bond in the indicated molecule. This does not confirm the supposed p,σ*-conjugation in the Cl―C―N grouping. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1537–1544, October, 2008.  相似文献   

11.
Ab initio calculations with full optimization of geometry have been carried out with the 6–31 G* basis set on tetrafluoroethylene (with the unrestricted Hartree-Fock method—UHF and the second-order Moller-Plesset perturbation theory—MP2) and tetratrifluoromethylethylene (with UHF) molecules in the singlet ground and triplet biradical states. The symmetry of the tetrafluoroethylene molecule in the triplet biradical state was demonstrated to differ from that of ethylene (D 2d ) due to the deviation of fluorine atoms from CCFF plane. The MP2 optimized geometries of ethylene and tetrafluoroethylene were used for higher level calculations (MP3, MP4, CCSD). The energy of the ground state singlet-biradical triplet splitting decreases in the series: ethylene>tetrafluoroethylene> tetratrifluoromethylethylene. These data on energy splitting explain the increase in reactivity toward the [2+2]-cycloaddition on going from ethylene to tetrafluoroethylene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 605–607, April, 1998.  相似文献   

12.
Microwave spectra of the 1,3-dioxane molecule (C4H8O2) with the main isotopic composition and four its isotopomers (13C(2)12C3H8 16O2, 13C(4)12C3H8 16O2, 13C(5)12C3H8 16O2, 18O(1)12C4H8 16O) are investigated in a frequency range of 28–44 GHz. Rotational transitions of b-and c-types with 2 ≤ J ≤ 5 are identified. Rotational constants, quartic constants of centrifugal distortion, isotope-substituted r s-and effective r 0-structures of the molecule ring are determined. Experimental data are compared to the results of quantum chemical calculations of different levels.  相似文献   

13.
Angle selective ENDOR of nitroxyl spin-labels is briefly reviewed to illustrate the methodology of structure analysis developed in our laboratory for characterizing catalytically competent intermediates of enzyme catalyzed reactions. ENDOR structure determination of a reaction intermediate of α-chymotrypsin formed with a kinetically specific spin-labeled substrate and of an enzyme-inhibitor complex formed with a spin-labeled transition-state inhibitor analog is briefly described. Both spin-labeled molecules bound in the active site of the enzyme are found in torsionally distorted conformations. It is suggested that this torsionally distorted state in which the bound ligand is of higher potential energy than in the ground state conformation reflects substrate destabilization in the course of the enzyme catalyzed reaction.  相似文献   

14.
Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition,ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d,p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31G level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.  相似文献   

15.
The equilibrium geometric parameters and structures of transition states of internal rotation for the molecules of methyldicyanophospine MeP(CN)2 and its isocyano analog MeP(NC)2 were calculated by the RHF and MP2 methods with the 6–31G* and 6–31G** basis sets. At the MP2 level, the total energy of cyanide is −35 kcal mol−1 lower than that of isocyanide and the barriers to internal rotation of methyl group for MeP(CN)2 and MeP(NC)2 are 2.2 and 2.7 kcal mol−1, respectively. For both molecules, the one-dimensionalab initio potential functions of internal rotation approximated by a truncated Fourier series were used to determine the frequencies of torsional transitions by solving direct vibrational problems for a non-rigid model. The Raman spectrum of crystalline MeP(CN)2 was recorded in the range 3500–50 cm−1. The vibrational spectra of this compound were interpreted by scalingab initio force fields calculated by the RHF and MP2 method. The vibrational spectrum of methyldiisocyanophosphine was predicted with the use of the obtained scale factors. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1703–1714, September, 1998.  相似文献   

16.
The molecular structure of 2,2-difluoroethanal (DFE) in the ground (S0) and lowest excited triplet (Ti) electronic states was investigated byab initio quantum-chemical methods. In the S0 state, the DFE molecule exists as the only stablecis conformer. The Ti↓S0 electronic excitation is accompanied by the rotation of the top and the deviation of the carbonyl fragment from planarity. For the DFE molecule in the Ti state, six minima corresponding to three pairs of enantiomers were found on the potential energy surface. Based on this potential energy surface, the problems on torsion and inversion nuclear motions were solved in the one- and two-dimensional approximations, and the interaction between these motions was revealed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 989–995, June, 2000.  相似文献   

17.
The structure of the conformationally flexible 2-fluoroethanal molecule (CH2FCHO, FE) in the ground (S0) and lowest excited triplet (T1) and singlet (S1) electronic states was investigated by ab initio quantum-chemical methods. The FE molecule in the S0 state was found to exist as two conformers, viz., as cis (the F—C—C—O angle is 0°) and trans (the F—C—C—O angle is 180°) conformers. On going both to the T1 and S1 states, the FE molecule undergoes substantial structural changes, in particular, the CH2F top is rotated with respect to the core and the carbonyl CCHO fragment becomes nonplanar. The potential energy surfaces for the T1 and S1 states are qualitatively similar, viz., six minima in each of the excited states of FE correspond to three pairs of mirror-symmetrical conformers. Based on the potential energy surfaces calculated for the FE molecule in the T1 and S1 states, the one-dimensional problems on the torsion and inversion nuclear motions as well as the two-dimensional torsion-inversion problems were solved.  相似文献   

18.
Nonempirical quantum-chemical calculations of pyridine and its 2-, 3-, and 4-X-substituted derivatives (X = F, Cl, Br, Me, and Et) by RHF/6-311G(d) and MP2/6-311G(d) methods indicate an alternation of charges on the atoms of the pyridine ring and of the occupancy of their valence py-orbitals. This is caused by the polarization of bonds under the action of the charges of the atoms geminal to C(n). Bonding molecular orbitals in these molecules, formed as a result of the py-orbitals, occurring in the plane of the pyridine ring, are not an indication (characteristic) of p, π-conjugation between the unshared electron pair of the heteroatom of a substituent X and the π-electron system of the ring. The results of the calculations by these methods did not differ in principle. Dedicated to Academician of the Russian Academy of Sciences M. G. Voronkov in honor of his 85th birthday. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1671–1681, November, 2006.  相似文献   

19.
Ab initio calculation of the 4-ClC6H4CH2Cl molecule was performed by the restricted Hartree-Fock method in the split valence 6–31 G* basis set with complete optimization of its geometry. Populations of p-orbitals of atoms of this molecule were analyzed.35Cl NQR frequencies and asymmetry parameters of the electric field gradient on35Cl nuclei were estimated on the basis of the populations of valent p-orbitals of CI atoms and their components. Good conformity with the experimental values was obtained when only less diffuse components of p-orbitals were used in calculations of populations.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 823–826, April, 1996.  相似文献   

20.
Ab initio calculations of chloride complexes of Au, Hg, Tl, Pb, and Bi in anomalous oxidation states (2S1/2 electron state) were carried out by the Becke-Lee-Yang-Parr density functional method using the Dunning-Hay LanL2DZ basis set. Optimum geometric parameters and electronic characteristics of MCl n (H2O) m n (n=1–4 andm=0,4,5) complexes were determined. In each of the considered series the spin, population on the central metal atom decreases as its atomic number increases. The energy of transition of the unpaired electron to the lowest unoccupied MO decreases in the same order. The unpaired electron occupies an orbital that is mostly a linear combination of the s-orbital of the metal atom and the p-orbital of the Cl atom (the antibonding σ-orbital of the M−Cl bond). Distinctions in the changes in spectral properties of aquacomplexes and chloride complexes in isoelectronic series, observed as the degree of oxidation of the metal atom increases, were explained. The results of calculations are in agreement with the experimental data obtained by ESR and optical spectroscopy. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1049–1055, June, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号