首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The production of ClOO and ClO radicals following the flash photolysis of chlorine + oxygen mixtures has been studied. For the mechanism the following kinetic parameters were measured: k3K = 1.3 × 1010 l2/mol2·sec; k2/k3 = 17; and k3/?(ClOO; 250 nm) = 9.7 × 105 cm/sec. Then k3 = 5.9 × 109 l/mol·sec, k2 = 1.0 × 1011 l/mol·sec, and ?(ClOO; 250 nm) = 6.1 × 103 l/mol·cm. From limits established for the equilibrium constant K, ΔH°f (ClOO) = 94 ± 2 kJ/mol.  相似文献   

2.
The mutual combination reaction is proposed as the rate-limiting step in the removal of ClO radicals at moderate pressures. The third--order rate constants measured at room temperature were k1(Ar) = 3.51 ± 0.14 × 109 l2/mol2·ec; k1(He) ≈ 2.8 × 109 l2/mol2·sec, and k1(O2) ≈ 7.9 × 109 l2/mol2·sec. There is also an independent second-order reaction for which k3 ≈ 8 × 106 l/mol·sec. A new absorption spectrum has been observed in the ultraviolet and attributed to Cl2O2. The extinction coefficient for Cl2O2 has been measured at six wavelengths, and, between 292 and 232 nm, it increases from 0.4 × 103 to 2.9 × 103 l/mol·cm. In the presence of the chlorine atom scavengers OClO or Cl2O, Cl2O2 exists in equilibrium with ClO. The equilibrium constant Ke1 = 3.1 ± 0.1 × 106 l/mol at 298 K, and, with ΔS10 estimated to be ?133 ± 11 J/K·mol, ΔH10 = ?69 ± 3 kJ/mol and ΔHf0(Cl2O2) = 136 ± 3 kJ/mol.  相似文献   

3.
The title reaction has been investigated in the temperature range 667–715K. The only reaction products were trifluorosilyl iodide and hydrogen iodide. The rate law was obeyed over a wide range of iodine and trifluorosilane pressures. This expression is consistent with an iodine atom abstraction mechanism and for the step log k1(dm3/mol·sec) = (11.54 ± 0.17) ? (130.5 ± 2.2 kJ/mol)/RT In 10 has been deduced. From this the bond dissociation energy D(F3Si? H) = (419 ± 5) kJ/mol (100.1 kcal/mol) is obtained. The kinetic andthermochemical implications of this value are discussed.  相似文献   

4.
The flash photolysis of azo?n?propane and of azoisopropane has been studied by kinetic spectroscopy. Transient absorption spectra in theregion of 220–260 nm have been assigned to the n-propyl and isopropyl radicals. For the n-propyl radical, ?max = 744 ± 39 l/mol cm at 245 nm and the rate constants for the mutual reactions were measured to be kc = (1.0 ± 0.1) × 1010 l/mol sec (combination) and kd = (1.9 ± 0.2) × 109 l/mol sec (disproportionation). For the isopropyl radical, ?max = 1280 ± 110 l/mol cm at 238 nm, with kc = (7.7 ± 1.6) × 109 l/mol sec and kd = (5.0 ± 1.2) × 109 l/mol sec The rate constant for the dissociation of the vibrationally excited triplet state of the azopropanes into radicals was measured from the variation in the quantum yield of radicals with pressure. For azo-n-propane k = (6.6 ± 1.3) × 107 sec?1, and for azoisopropane k = (1.6 ± 0.4) × 108 sec?1. Collisional deactivation of the vibrationally excited singlet and triplet states was found to occur on every collision for n-pentane; but nitrogen and argon were inefficient with a rate constant of 1.1 × 1010 l/mol sec. Spectra observed in the region of 220–260 and 370–400 nm areattributed to the cis isomers of the parent trans-azopropanes. These are formed, as permanent products, in increasing amounts as the pressure is increased.  相似文献   

5.
The equilibrium has been studied between 275°and 363°K. Third-law calculations lead to ΔH°298(1) = -11.50 ±0.17 kcal/mol, from which Absorption bands of BrNO in the ultraviolet with emax = 215 nm) = 1.84±0.17 × 104 1/mol·cm, and in the red with emax = 708 nm) = 7.7±1.9 1/mol·cm at 298°K have been investigated. The rate of formation of BrNO has also been measured between 275°and 363°K.  相似文献   

6.
The rate constant k4 has been measured at 268°, 298°, and 334° K for the reaction CH2O + 2OH → CO + 2H2O relative to that for OH + OH (k2) by competition experiments in a discharge flow tube using mass-spectrometric analysis. Based on k2 = 2.24 × 10?12cm3/molec·sec at 298°K and E2 = 4 kJ/mol, k4 = (6.5 ± 1.5) × 10?12cm3/molec·sec at 298°K and E4 = (6 ± 2)kJ/mol.  相似文献   

7.
The kinetics of the anionic polymerization of octamethylcyclotetrasiloxane (D4) initiated by α-methylstyrene living polymer in tetrahydrofuran was studied. The following kinetic scheme was postulated: Initiation: Propagation: where S- and M represent the initiator and D4, respectively. At a living end concentration of 0.0377 mole/l. and a monomer concentration of 1.5 mole/l. in tetrahydrofuran at 25°C. the following kinetic data were obtained: k1 = 2.3 × 10?4 l./mole-sec., k2 < 2.3 × 10?5 sec.?1, k3 = 2.75 × 10?2l./mole-sec. k4 ≈ 1.17 × 10?2 sec.?1, K1 > 10 l./mole and K2 ≈ 2.35 l./mole. The rate constants k1 and k3 were found to be dependent on the concentration of anions. This is attributed to the dissociation of ion pairs to free ions at lower concentration. Under the experimental conditions studied the majority of the anions were present in the form of ion pairs. The reactivity of the free ions is about 100 times greater than that of ion pairs. There is no temperature effect on K2, indicating zero ΔH and positive ΔS in the propagation reaction.  相似文献   

8.
Using the technique of molecular modulation spectrometry, we have measured directly the rate constants of several reactions involved in the oxidation of methyl radicals at room temperature: k1 is in the fall-off pressure regime at our experimental pressures (20–760 torr) where the order lies between second and third and we obtain an estimate for the second-orderlimit of (1.2 ± 0.6) × 10?12 cm3/molec · sec, together with third-order rate constants of (3.1 ± 0.8) × 10?31 cm6/molec2 · sec with N2 as third body and (1.5 ± 0.8) × 10?30 with neopentane; we cannot differentiate between k2a and k2c and we conclude k2a + (k2c) = (3.05 ± 0.8) × 10?13 cm3/molec · sec and k2b = (1.6 ± 0.4) × 10?13 cm3/molec · sec; k3 = (6.0 ± 1.0) × 10?11 cm3/molec · sec.  相似文献   

9.
Spectrophotometric methods have been used to obtain rate laws and rate parameters for the following reactions: with ka, kb, Ea, Eb having the values 85±5 l./mole · s, 5.7±0.2 s?1 (both at 298.2°K), and 56±4 and 66±2 kJ/mole, respectively. with kc=0.106±0.004 l./mole ·s at 298.2°K and Ec=67±2 kJ/mole. with kd=(3.06 ±; 0.15) × 10?3 l./mole ·s at 298.2°K and Ed=66±2 kJ/mole. Mechanisms for these reactions are discussed and compared with previous work.  相似文献   

10.
A temperature dependence study of the ultrasonic amplitudes, velocities, and relaxation times for a presumed conformational transition of noncomplexed aqueous 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) is discussed. At all temperatures a single relaxation was observed within a 15–255-MHz frequency range. The equilibrium constant for the presumed conformational transition \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CR}_1 \mathop \rightleftarrows\limits^{K_{12} } {\rm CR}_2 $\end{document} was determined to be K21 = (2 ± 2) × 10?2. The activation parameters are ΔH21 = 10.2 ± 1.0 kcal/mol, ΔS21 = 7.7 ± 0.2 cal/(mol·deg), ΔH12 = 7.4 ± 1.0 kcal/mol, and ΔS12 = 7.7 ± 0.2 cal/(mol·deg), while the thermodynamic enthalpy and entropy were found to be ?2.6 ± 1.0 kcal/mol and 0 ± 0.2 cal/(mol·deg), respectively. The rate constants at 25.0°C for the presumed conformational transition are k21 = (1.0 ± 0.3) × 107 sec?1 and k12 = (6.2 ± 0.2) × 108 sec?1.  相似文献   

11.
The rate of disappearance of C2N2 in the presence of a large excess of H atoms has been measured in a discharge-flow system at pressures near 1 torr and temperatures in the range of 282–338 K. Under these conditions the reaction has a small negative temperature coefficient. A transition from second-order to third-order kinetics with decreasing pressure occurs at pressures near 1 torr. The results are discussed in terms of the mechanism where k7 = (1.5 ± 0.2) × 10–15 cm3/molec1·sec is found for the forward rate of reaction (7). The results also give k7k8/k?7 = 3.7 × 10?31 cm6/molec2·sec and k7k9/k?7 = 3.0 × 10?32 cm6/molec2·sec, the first being probably an upper limit and the second probably a lower limit; hence k8/k9 = 12 is found as an upper limit.  相似文献   

12.
Intrinsic spectral and kinetic parameters have been measured for the ethyl radical, which was formed in the gas phase by the flash photolysis of azoethane. Absolute values of the extinction coefficient ?(λ) were derived from complementary measurements of the yield of nitrogen and the absorbance of an equivalent concentration of the ethyl radical. The absorption spectrum is broad, structureless, and comparatively weak; ?(247) = 4.8 × 102 l/mol·cm at the maximum, and the oscillator strength is (9.1 ± 0.5) × 10?3. This is in good qualitative agreement with a spectrum obtained independently using the technique of molecular modulation spectrometry. The biomolecular reactions of mutual interaction were the only significant reactions of the ethyl radical in this system; kinetic analysis of the second-order decline of the absorbance during the dark period yielded a value of k/?(λ) for each experiment. The rate constant for mutual interaction was evaluated from the product of corresponding measurements of k/?(λ) and ?(λ) individual values are independent of the wavelength of measurement, and the mean value is k = (1.40 ± 0.27) × 1010 l/mol·sec. The rate constant for mutual combination was derived with the aid of product analysis as k2 = (1.24 ± 0.23) × 1010 l/mol·sec; it stands in close agreement with the set of “high” values obtained by direct measurement using a variety of methods.  相似文献   

13.
The equilibrium I2(g) + 2NO(g) = 2INO(g) has been studied at room temperature by ultraviolet absorption spectroscopy. The equilibrium constant has been measured as Kp = (2.7 ± 0.3) × 10?6 atm?1 at 298 K. Third-law calculations lead to ΔH°f,298 (INO) = 120.0 ± 0.3 kJ/mol. The relative absorption spectrum of INO has been measured between 225 and 300 nm. Quantitative measurements gave ?(λmax = 238 nm) = (1.79 ± 0.5) × 104 L/mol·cm and ?(410 nm) = 234.7 ± 21 L/mol·cm.  相似文献   

14.
The kinetics of the oxidation of iodide by hydrogen peroxide catalyzed by acidic molybdate have been studied by a spectrophotometric stopped-flow method. The results are interpreted in terms of the mechanism and the implied rate law where [mol] is total analytical concentration of molybdate. The values obtained for the rate and equilibrium constants are k4 = (3.3 ± 1) × 102 1./mole · s, K1 = (1.2 ± 0.6) × 104 1./mole, K2 = (1.3 ± 0.7) × 103 1./mole, and K3 = (4 ± 3) × 102 1./mole at 298°K.  相似文献   

15.
Abstract

The polymerization of styrene (St) initiated by 1,4-dimethyl-1,4-bis(p-anisyl)-2-tetrazene (1a) was studied kinetically in benzene. The polymerization proceeds through a radical mechanism. The rate of polymerization is proportional to [1a]0.5 and [St]1.0. The overall activation energy for the polymerization is found to be 81.2 kJ/mol within the temperature range of 65 to 80°C. The activation parameters for the decomposition of 1a at 70°C are kd = 1.88 × 10?5s?1, δH? = 133.1 kJ/mol, and δS? = 29.9 J/mol·deg.  相似文献   

16.
Rate constants for the reaction O(3P) + SO2 + M have been determined over the temperature range of 299°–440°K, using a flash photolysis–NO2 chemiluminescence technique. For M?Ar, the Arrhenius expression was obtained. At room temperature k2Ar = (1.05 ± 0.21) × 10?33 cm6/molec2·sec. In addition, the rate constants k2 = (1.37 + 0.27) × 10?33 cm6/molec2·sec, k2 = (9.5 ± 3.0) ± 10?33 cm6/molec2·sec, k3 = (1.1 ± 0.2) ± 10?31 cm6/molec2·sec, and k3 = (2.6 ? 0.9) ± 10?31 cm6/molec2·sec were obtained at room temperature where k3M is the rate constant for the reaction O + NO + M → NO2 + M. The rate data are compared and discussed with literature values.  相似文献   

17.
The rate constants for the reactions have been measured directly by flash photolysis and kinetic spectroscopy. At room temperature, k3 = (3.4 ± 0.1) × 109 L/mol·s, independent of pressure in the range of 55–400 torr, and k6 = (2.1 ± 0.2) × 109 L/mol·s.  相似文献   

18.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature.  相似文献   

19.
The mechanism of the reactions of electronically excited SO2 with isobutane has been studied through the measurement of the initial quantum yields of product formation in 3130 Å irradiated gaseous binary mixtures of SO2 and isobutane and ternary mixtures of SO2, isobutane, C6H6 or CO2. Under low-pressure conditions (P < 10 torr) the kinetic treatment of the present data shows that only one singlet and one triplet state, presumably the 1B1 and 3B1 states, are involved in the photoreaction mechanism. The data give k2a = 8.4 × 109; SO2(1B1) + isobutane → products (2a); k5a ? k5 = 8.7 × 108 l./mol·sec; SO2(3B1) + isobutane → products (5a) SO2(3B1) + isobutane → (SO2) + isobutane (5b) k1a/k1 = 0.145 ± 0.037; SO2(1B1) + SO2 → SO2(3B1) + SO2 (1a) SO2(1B1) + SO2 → (2SO2) (1b) k2b/k2 = 0.273 ± 0.018; SO2(1B1) + isobutane → SO2(3B1) + isobutane (2b); SO2(1B1) + isobutane → (SO2) + isobutane (2c) error limits are ± 2 σ. The contribution from the excited SO2(1B1) molecules to the quantum yields of the photolyses of SO2–isobutane mixtures is not negligible. Under high-pressure conditions (P > 10 torr) the low-pressure mechanism coupled with the saturation effect on the phosphorescence lifetimes of SO2(3B1) molecules cannot alone rationalize the quantum yields. The evaluation suggests that some nonradiative intermediate state (X) is involved in the formation of “extra” triplet molecules. This ill-defined state decays largely nonradiatively to SO2 in experiments at low pressures, X → SO2 (12). In the presence of C6H6 the low-pressure data give k7 = (8.5 ± 1.8) × 1010, and the high-pressure data give k7 = (8.3 ± 0.6) × 1010 and (9.9 ± 0.9) × 1010l./mol·sec; SO2(3B1) + C6H6 → nonradiative products (7). These estimates are in good agreement with values directly measured from low-pressure lifetime studies, (8.1 ± 0.7) × 1010 and (8.8 ± 0.8) × 1010l./mol·sec.  相似文献   

20.
N2O decay has been monitored via infrared emission for a series of mixtures containing N2O/Ar and N2O/H2/Ar. These mixtures were studied behind reflected shock waves in the temperature interval of 1950–3075°K with total concentrations ranging from 1.2 to 2.5 × 1018 molec/cm3. In all cases the N2O decayed exponentially, and a rate constant kobs was obtained. Runs without added H2 could be described by the following Arrhenius parameters: log A = ?9.72 ± 0.08 (in units of cm3/molec · sec) and EA = 203.5 ± 3.6 kJ/mole. Addition of 0.01% and 0.1% H2 was observed to increase the decay rate; the largest increase occurred between 2250 and 2500°K with 0.1% H2, where kobs doubled. Mixtures with no added H2 were analyzed by numerical integration of the following reactions: Quantitative agreement between calculations and observations were obtained with both high and low choices for k2 and k3. The additional reactions were included in the analysis of the mixtures containing H2. Here agreement was obtained only when low values were assigned to k2 and k3. The combinations of k1k3 which agreed with all the data were k1 = 3.25 × 10?10 exp (?215 kJ/RT) and k2 = k3 = 1.91 × 10?11 exp (-105 kJ/RT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号