首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hysteresis loops and the micromagnetic structure of a ferromagnetic nanolayer with a randomly oriented local easy magnetization axis and two-dimensional magnetization correlations are studied using a micromagnetic simulation. The properties and the micromagnetic structure of the nanolayer are determined by the competition between the anisotropy and exchange energies and by the dipole–dipole interaction energy. The magnetic microstructure can be described as an ensemble of stochastic magnetic domains and topological magnetization defects. Dipole–dipole interaction suppresses the formation of topological magnetization defects. The topological defects in the magnetic microstructure can cause a sharper change in the coercive force with the crystallite size than that predicted by the random magnetic anisotropy model.  相似文献   

2.
Random anisotropy model (RAM) was investigated by means of numerical simulation. Magnetization of magnetically interacting grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation where the magnetization in a particular grain is assumed to align in the same direction (single spin model). Calculations were carried out for 10×10×10 three dimensional cells changing cell sizes from 5 to 25 nm. The relation between coercive forces and grain sizes was obtained to be HCD5.7 from the simulated magnetization curves. This result fits the primitive theory HCD6 and the experimental results.  相似文献   

3.
The magnetization curves of randomly oriented nanoparticles with combined symmetry of magnetic anisotropy were studied. The composite mode of the Stoner–Wolfarth model has been used. In terms of this model each nanoparticle is characterized by random cubic crystalline magnetic anisotropy and by random uniaxial magnetic anisotropy. The series of simulated magnetization curves have been obtained. Each curve corresponds to different contributions of cubic and uniaxial magnetic anisotropy energy to the full energy of an individual nanoparticle ku. Within this series we discuss the values of remnant magnetization, coercive force, both initial and maximal susceptibilities as the function of ku. It is found that the magnetic properties are not monotonous functions of ku. We discuss the possibility of comparing the calculated magnetization curves with the experimental curves in order to obtain new information on the magnetic constant.  相似文献   

4.
We investigate domain wall and domain structure in a monolyer film consisting of ferromagnetic grains with biaxial anisotropy, which are seen to be the static versions of instanton and soliton, respectively. The equation of motion of the magnetization vector is reduced to the (1 + 2)-dimensional sine-Gordon field equation in strong anisotropy limit and the instanton and soliton configurations are obtained analytically. Various new domain structures in the ferromagnetic film are found.  相似文献   

5.
6.
7.
This paper reports on the results of the magnetostatic measurements for Co-Al-O nanogranular films over a wide range of concentrations of the ferromagnetic component x. It has been revealed that grains in the films are characterized by the growth-induced anisotropy with easy axes directed perpendicular to the film plane. The maximum field of the single-grain perpendicular anisotropy reaches ∼2.5 kOe for samples in the vicinity of the percolation threshold (x ≈ 61 at % Co). It has been established that the characteristic features of the superparamagnetic behavior of an ensemble of oriented Stoner-Wohlfarth particles are retained for the sample with x ≈ 61 at % Co in the presence of the demagnetization field associated with the net magnetization of the film. The influence of the demagnetization field of the film on the shape of the magnetization reversal curves, the coercivity, and the blocking temperature has been investigated and simulated. The results of the simulation are consistent with the experimental data.  相似文献   

8.
顾文娟  潘靖  杜薇  胡经国 《物理学报》2011,60(5):57601-057601
采用铁磁共振方法,研究了铁磁/反铁磁双层膜系统中,因交换耦合以及磁晶各向异性而产生的有效各向异性场.结果表明:被测系统有无交换偏置场以及其正负号性质等均能在共振谱中得到辨析.结果还显示:沿着不同结晶方向施加外磁场,共振场的行为与磁晶各向异性以及铁磁/反铁磁交换耦合作用而诱发的单向各向异性等密切相关.将共振频率的变化看成外磁场(包括其方向和大小)的函数,研究得到了单向各向异性,立方各向异性等对共振频率的影响,并同实验结果做了很好的比较. 关键词: 铁磁/反铁磁双层膜 交换耦合 铁磁共振 单向各向异性  相似文献   

9.
Magnon density distribution can be affected by the spin-transfer torque in a perpendicular ferromagnetic anisotropy nanowire. We obtain the analytical expression for the critical current condition. For the cases of below and above the critical value, the magnon density distribution admits bright and dark soliton states, respectively. Moreover, we discuss two-soliton collision properties that are modulated by the current. Each magnetic soliton exhibits no changes in both velocity and width before and after the collision.  相似文献   

10.
We investigated remagnetization processes in ferromagnetic nanoparticles under inhomogeneous magnetic field induced by the tip of magnetic force microscope (MFM) in both theoretical and empirical ways. Systematic MFM observations were carried out on arrays of submicron-sized elliptical ferromagnetic particles of Co and FeCr with different sizes and periods. It clearly reveals the distribution of remanent magnetization and processes of local remagnetization of individual ferromagnetic particles. Modeling of remagnetization processes in ferromagnetic nanoparticles under magnetic field induced by MFM probe was performed on the base of Landau–Lifshitz–Gilbert equation for magnetization. MFM-induced inhomogeneous magnetic field is very effective to control the magnetic state of individual ferromagnetic nanoparticles as well as to create different distribution of magnetic field in array of ferromagnetic nanoparticles.  相似文献   

11.
12.
A linear cluster mean-field approximation is used to study the magnetic properties of the Ising ferromagnetic/antiferromagnetic superlattice, which is composed of a spin-1/2 ferromagnetic monolayer and a spin-1 antiferromagnetic monolayer with a single-ion anisotropy alternatively. By using the transfer matrix method, we calculate the magnetization and the initial magnetic susceptibility as functions of temperature for different interlayer coupling, single-ion anisotropy. We summarize the changing behaviors of the spin structure in ferromagnetic and antiferromagnetic layers and the characteristics of the corresponding magnetic susceptibilities, give the transition temperature as a function of the interlayer exchange coupling for different single-ion anisotropy, and analyze the features of the magnetization and the magnetic susceptibility.  相似文献   

13.
Sub-micron sized magnetic tunnel junctions are fabricated by electron beam lithography. Magnetoresistance measurements were done at crossed easy- and hard-axis fields and the critical switching curves for 3 different sub-μm junctions are discussed. Single domain like switching according to the Stoner and Wohlfarth model can be achieved, but Néel coupling effects and AAF stray field effects have to be controlled.  相似文献   

14.
Based on the Monte Carlo simulation, the magnetic properties of the clusters, e.g. magnetization, Curie temperature, hysteresis, coercivity, natural angle and energy distribution etc., have been calculated. It has been found that, for the pure ferromagnetic cluster, the T3/2 Bloch law is well satisfied at low temperature (T < 0.5 TC) and Bsur is equal to 3 Bbulk. Meanwhile, there are clear indications that B increases drastically with the reducing atomic number Nwhich is consistent with the experimental facts. The results have been evalucted using the Bloch exponent law in the approximate crystalline approximation. It has also been demonstrated that the size dependence of the Curie temperature can be described by finite-size scaling theory. The investigation of the hysteresis and the spin configurations in different magnetization processes reveals the existence of an easy magnetization direction and anisotropy. The thermal coercivity for the clusters with zero and finite uniaxial anisotropy matches the experimental results well. The simulated results for the natural angle and energy distribution in the clusters prove further the existence of the configurational anisotropy in the clusters. It has been discussed that the natural angle and energy distribution influence the hysteresis of a cluster.Received: 10 September 2003, Published online: 15 March 2004PACS: 75.75. + a Magnetic properties of nanostructures - 75.40.Mg Numerical simulation studies - 75.60.Ej Magnetization curves, hysteresis, Barkhausen and related effects - 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)  相似文献   

15.
The characteristic features of ferromagnetic resonance (FMR) were studied in bismuth-containing single-crystal iron-garnet films (BSIGFs) with no rapidly relaxing ions and relatively weak orthorhombic magnetic anisotropy (ORMA). The films were grown on (110) and (210) substrates by liquid-phase epitaxy from a supercooled flux solution. Attention is focused mainly on the unidirectional magnetic anisotropy in the film plane and on the effect of the film/substrate transitional surface layer on the FMR spectrum. Fiz. Tverd. Tela (St. Petersburg) 41, 1254–1258 (July 1999)  相似文献   

16.
17.
It is argued that the straightness or otherwise of plots of Mb2 vs (B0/Mb) (where Mb is the magnetization in a magnetic induction Bo and at approximately zero temperature) for different concentrations in the critical or percolation concentration region for long-range ferromagnetic order in atomically disordered metal alloys is neither a satisfactory measure of the magnetic (and/or metallurgical) homogeneity of the alloys nor is it an acceptable test of the applicability of Landau's theory of phase transitions to such alloy systems.  相似文献   

18.
A theoretical model describing the magnetization distribution in a system of closely packed ferromagnetic grains with a random distribution of easy magnetization axes is constructed. It is demonstrated that, in this system, the domain structure with domains characterized by a random distribution of magnetization axes is formed even if the magnetostatic energy is negligible and can be ignored. The domain size increases linearly with an increase in the ratio of the exchange energy of the interaction between grains to the anisotropy energy of a single grain. The inclusion of the magnetostatic energy only insignificantly changes the domain size but leads to the formation of a vortex magnetization distribution inside the domains. The behavior of the system is numerically simulated by the Monte Carlo method. The results of the simulation confirm the conclusions drawn from the theoretical model.  相似文献   

19.
The relative magnetization of a random fcc ferromagnetic alloy is calculated as a function of temperature and concentration. Results are in good agreement with published measurements on Ni-Cu alloys.  相似文献   

20.
The magnetic properties (ground state, magnetic phase diagram, and phase transitions in a magnetic field) of two-and three-dimensional lattices of ferromagnetic grains with the intergrain dipole interaction are studied. The main attention is paid to the lattices formed by nonspherical grains (prolate and oblate ellipsoids of revolution) and their extreme forms (rodlike and disc-shaped grains). An analysis shows that the conclusions of the theory are in good agreement with the results of experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号