首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micellar properties of binary combinations of a family of cationic alkyl triphenyl phosphonium bromides with varying chain length (C10–C16) were investigated in aqueous and aqueous ethylene glycol mixtures employing conductometric technique. The results of the mixed systems were analyzed in the light of the Regular Solution Theory and the Gibbs–Duhem equation to evaluate the composition of the mixed micelle, the activity coefficients, and the interaction parameter (β). The excess free energy and the other related thermodynamic parameters of mixing were calculated and discussed in terms of the stability of the mixed micelles in the presence of an ethylene glycol additive. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
 The conductances of trimethyltetradecylammonium bromide (TTAB) + trimethylhexa decylammonium bromide (HTAB) and TTAB + trimethyldodecylammonium bromide (DTAB) mixtures over the entire mole fraction range were measured in aqueous poly(vinyl pyrrolidone) (PVP) containing 1–10 wt% PVP at 30 °C. Each conductivity (κ) curve for the TTAB + HTAB mixtures showed two breaks corresponding to two aggregation processes over the whole mole fraction range, except in the case of pure TTAB, where a single break corresponding to the conventional critical micelle concentration (cmc) was observed. In the case of TTAB + DTAB mixtures, each κ curve at a particular mole fraction of TTAB showed only one break, which was quite close to a similar one in pure water. In TTAB + HTAB mixtures, the first break is called the critical aggregation concentration. It is close to the conventional cmc and is attributed to the polymer-free micelle formation, whereas the second break is due to the polymer-bound micellar aggregates. However, no polymer-bound micellar aggregation process was observed in the case of TTAB + DTAB mixtures. Therefore, the presence of micelle–PVP interactions in the TTAB + HTAB case have been attributed to the stronger hydrophobicity of HTAB or TTAB + HTAB micelles in comparison to that of single or mixed micelles of TTAB + DTAB mixtures. From the conductivity data, various micelle parameters in the presence of PVP have been computed and discussed in terms of micelle–polymer interactions. The mixing behavior of TTAB +  HTAB corresponding to the first break, and that of TTAB + DTAB mixtures in the presence of PVP, is close to ideal and is also identical to that in pure water. Received: 26 August 1999 Accepted: 6 November 1999  相似文献   

3.
In this report, we investigate the nanoparticle formation between random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) and oppositely charged natural surfactants, sodium oleate and sodium laurate, using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Though sodium oleate and sodium laurate are sparingly soluble in water, the nanoparticle complexes formed between the RCPs and these surfactants are soluble in the entire range of compositions studied here, including the stoichiometric electronetural complexes. The spherical nature of these nanoparticle complexes is revealed by electron microscopic (EM) analysis. Dynamic light scattering (DLS) showed that the average diameters of the nanoparticles are in the range 50 to 150 nm, which is supported by EM analysis. Pyrene fluorescence experiments suggested that these soluble nanoparticles have hydrophobic cores, which may solubilize hydrophobic drug molecules. The polarity index (I(1)/I(3)) obtained from the pyrene fluorescence spectra and the conductometric measurements showed that the critical concentration of fatty acid salts needed to obtain nanoparticles are in the order of 10(-4) M. Further, the complexation of such poorly water-soluble amphiphilic surfactants with polymers offers a useful method for the immobilization of hydrophobic compounds towards water-soluble drug carrier formulations. The formation of water-soluble nanoparticles by the self-assembly of fatty acid salts upon interacting with oppositely charged poly(ethylene glycol)-based polyions.  相似文献   

4.
ABSTRACT

We are reporting on the interaction of zinc oxide (ZnO) nanoparticles (NPs) with the lyotropic phase comprises of Polyoxyethylene (20) sorbitan monolaurate and protic solvent ethylene glycol. The concentration of the NPs has been varying from 0.05 to 0.5 wt%. Multiwall lamellar and inverse phases have been observed at lower and higher concentration of ZnO NPs doping. Interestingly, the organization of ZnO NPs on the periphery and inside the periphery of ring-like structures has been observed at lower and higher concentration of the dopant, respectively. Such organization of the NPs can be explained considering interfacial interaction amid host and dopant and may also attribute to the adsorption mechanisms of surfactant. Effects of NPs doping on the dielectric dynamics has also been examined. About 32.6% decrease in the dielectric permittivity has been noticed at higher NPs doping. Such decrement in permittivity could be a result of the screening of the ZnO NPs dipole moment by the adsorption of surfactant molecules on their surface. Relaxation and optical parameters of the non-doped and doped mixtures have also been discussed.  相似文献   

5.
The molecular dynamics and the structure of molecular complexes formed by micelles of dodecyl-substituted poly(ethylene glycol) with poly(methacrylic acid) and poly(acrylic acid) in aqueous solutions were studied by viscosimetry, pH measurement, and electron spin resonance spin-probe techniques. At low surfactant concentrations, the conformation of the complex is a compact globule. The local mobility of surfactant molecules in such a complex is much slower than that in the free micelle. At high surfactant concentration, the nonionic micelles and polyacids form hydrophilic associates. The associates have the conformation of extended coils. In an associate, a major part of the micellar poly(ethylene glycol) groups is free. The local mobility of the micellar phase depends on the number of micelles involved in an associate. The mobility of surfactant molecules is slower in the complexes of poly(methacrylic acid) than in the complexes of poly(acrylic acid).  相似文献   

6.
Thermogelling poly(ε-caprolactone-co-D,L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-D,L -lactide) and poly(ε-caprolactone-co-L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-L -lactide) triblock copolymers were synthesized through the ring-opening polymerization of ε-caprolactone and D,L -lactide or L -lactide in the presence of poly(ethylene glycol). The polymerization reaction was carried out in 1,3,5-trimethylbenzene with Sn(Oct)2 as the catalyst at various temperatures, and the yields were about 96%. The molecular weights and polydispersities (Mw/Mn) by gel permeation chromatography were in the ranges of 5140–6750 and 1.35–1.45, respectively. The differential scanning calorimetry results showed that the melting temperatures of the poly(ε-caprolactone) components were between 30 and 40 °C. By the subtle tuning of the chemical compositions and microstructures of these triblock copolymers, the aqueous solutions underwent sol–gel transitions as the temperature increased, with the suitable lower critical solution temperature in the range of 17–28 °C at different concentrations. Transesterification in the polymerization process generated the redistribution of sequences, which remarkably affected the sol–gel transition temperature. The amphiphilic copolymers formed micelles in aqueous solutions with a diameter of 62 nm and a critical micelle concentration of about 0.032 wt % at 20 °C. Micelles aggregated as the temperature increased, leading to gel formation. The sol–gel transition was studied, with a focus on the structure–property relationship. It is expected to have potential applications in drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4091–4099, 2007  相似文献   

7.
Steady state fluorescence measurements have been carried out for binary mixtures of a series of monomeric cationic (MC), zwitterionic (ZI), dimeric cationic (DC), and twin-tail cationic (TC) surfactants with sugar (beta-C8G and beta-C12G) over the whole mole fraction range using pyrene as fluorescence probe. The cmc values thus determined for all the binary mixtures have been further evaluated using the regular solution theory. The various micellar parameters, such as micelle mole fraction (X1), regular solution interaction parameter (beta), micropolarity, and mean micelle aggregation number (Nagg), have been determined for all these series of mixtures. Variation in all these micellar parameters demonstrates that mixed micelles of these surfactants with beta-C8G are mostly synergistic in nature and the synergism increases with the increase in hydrophobicity of the cosurfactant in each case. The mixtures of beta-C12G with various cosurfactants do not show this behavior and instead of it, they show an increase in antagonism with the increase in hydrophobicity of cosurfactants. This discrepancy has been attributed to a large difference in hydrophobicity between beta-C8G and beta-C12G, and the chain folding of the latter is considered to be the reason for the antagonism.  相似文献   

8.
The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X‐100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X‐100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X‐100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K+ was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.  相似文献   

9.
The photophysical behavior of a hydrophobically tailored water-soluble polymer, pyrene-end-capped poly(ethylene oxide) (PYPY), has been studied in aqueous buffered bovine serum albumin (BSA) and human serum albumin (HSA) media. In buffered aqueous solution the polymer shows dual emission corresponding to the monomer and the excimer of pyrene moiety. The relative intensity of the monomer to the excimer emission shows interesting variation with the addition of BSA and HSA and is indicative of significant interaction of these albumin proteins with the polymer. The binding interaction has been shown to have a prominent role on the steady state fluorescence anisotropy of the two emission bands. Attempt has been made to determine the micropolarities of the protein microenvironments from a comparison of the variation of the monomer to excimer relative fluorescence intensities of the probe in water–dioxane mixtures with varying composition.  相似文献   

10.
11.
Mixed micelle formation and surface tension reduction effectiveness (γcmc) were investigated for the following systems: triethanolammonium dodecylpoly(oxyethylene)sulfate (TADPS, containing about two ethylene oxide units)/dodecyltrimethylammonium bromide, TADPS/hexadecyltrimethylammonium bromide and TADPS/hexadecylpyridinium chloride. For all these anionic/cationic systems, the mixed critical micelle concentration (cmc) values reflect a strong synergism in mixed micelle formation, with βM values ranging from −13.8 to −18.3. The mixed micelle composition is mixing-ratio dependent and, for equimolar mixtures, the mixed micelle is richer in the surfactant with the lower cmc. Precipitation is inhibited to a certain extent, thanks to the presence of ethylene oxide groups in the anionic species. The conditions for synergism in γcmc, differently expressed in the literature, can be derived from the surface tension equations established in our previous article. They can be conveniently described by a few characteristic constants: Γ i (saturated Gibbs excess), K i (constant in the Szyszkowski equation), the cmc of the individual surfactants and the interaction parameters, βS and βM, of their mixtures. Excellent agreement between theoretically predicted and experimental results is obtained. With the increase in surfactant chain length, the βM values decrease faster than the βS ones and this can result in the loss of synergism in γcmc. Received: 11 June 2000 Accepted: 4 September 2000  相似文献   

12.
Micelle formation in a cetyltrimethylammonium bromide-poly(ethylene glycol)-600 monolaurate-chloroform system in the absence and presence of hydroxybenzylated polyethylenimines (PEI) was studied by dielcometric titration, NMR self-diffusion, light scattering, and kinetic methods. A catalytic effect of mixed micelles on the reaction of 4-nitrophenylbis(chloromethyl)phosphinate with PEI was shown. The catalytic effect depends on the degree of substitution of PEI and composition of a surfactant mixture. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1359–1365, August, 2006.  相似文献   

13.
The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems.  相似文献   

14.
Block copolymerization by using isocyanates is an effective method for incorporating PHB and PEG because it can prepare copolymers with good properties, such as toughness, strength, and so on. In this study, we adopted soil suspension system to estimate the biodegradability of a series of PHB/PEG multiblock copolymers with different compositions and block lengths. In the degradation process, the changes in weight loss, molecular weight, and tensile strength were periodically measured to determine the biodegradability, and the surface morphology was also observed by SEM. In contrast to pure PHB, the weight loss of the copolymer was relatively lower. On the other hand, the tensile strength and molecular weight experienced apparent decrease, and for BHG1000-3-1, they reached 46.7% and 77.7% of the initial value, respectively. SEM observation showed that the surface was covered with numerous erosion pits. All these indicate that the degradation indeed took place and long-chain molecules have been hydrolyzed into shorter ones. The crystallization behavior was also investigated by DSC and WAXD. The results showed that both the segments, PEG and PHB, can form crystalline phases at lower PHB contents ranging from 29% to 44%, and when PHB component was more than 60%, only PHB phase can crystallize.  相似文献   

15.
The comb‐type polyelectrolyte, poly(ethylene glycol)‐graft‐poly(allyl amine) (PEG‐g‐PAA), was synthesized to prepare polyion complex (PIC) micelles with Aspergillus Niger Glucose oxidase (GOD). Even after mixing GOD and PEG‐g‐PAAs with various PEG contents, the resulting mixtures remained transparent but the mixture of GOD and PAA homopolymer immediately precipitated. In the mixtures prepared with a stoichiometric mixing ratio, the formation of PIC micelles with a core‐shell structure was suggested from dynamic and static light scattering measurements. Glucose, the substrate for GOD, could easily diffuse into the PIC micelles, and the GOD molecules were active even in the core of the PIC micelles. GOD didn't lose its enzymatic activity through entrapment into the PIC micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3842–3852, 2008  相似文献   

16.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
In this paper, we report a novel synthesis of poly(ethylene oxide monooleate-block-DL-lactide) (MOPEO-PLA) in the presence of stannous 2-ethylhexanoate catalyst. By utilizing the surfactant property and the reactive double bond of the amphiphilic MOPEO-PLA, various characteristics of PLA microspheres, such as surface and internal structure, surface morphology, release property, and so on, may potentially be controlled. MOPEO-PLA was found to be hydrophobic enough to prevent loss by dissolution into aqueous solution, which is often a problem for MOPEO. Furthermore, the interfacial tension measurements of a MOPEO-PLA/toluene/water system revealed that MOPEO-PLA had a good surface activity almost equal to that of MOPEO. The MOPEO-PLA/PLA blend films were prepared by solvent casting on a water layer. Contact-angle measurements of MOPEO-PLA/PLA blend films confirmed that the hydrophilic PEO segments were selectivity accumulated at the oil/water interface. Moreover, the surface free energy on the 'water side' of the MOPEO-PLA/PLA blend films was increased because of the increase in polar components as a result of the ether bonds of the PEO segments. Schematic illustration of the adsorption property of a) MOPEO-PLA with a high-molecular-weight PLA segment and b) MOPEO-PLA with a low-molecular-weight PLA segment at an ethyl acetate/water interface.  相似文献   

18.
Nonionic gemini surfactants HBA(EO)80 were synthesized and characterized by means of surface tension measurements. CMCs of two mixed system, nonionic gemini mixed with anionic gemini (HBA(EO)80/C11pPHCNa) and nonionic gemini mixed with anionic monomeric (HBA(EO)80/SL) and the effect of salt on the two mixed system were investigated. Freeze-fracture transmission electron microscopy and scanning electron microscopy were used to investigate the mixed aggregates' morphologies. The results show that large spherical aggregates were formed in the mixed solution, which trend to transfer into micelles with the increases of the salt concentration.  相似文献   

19.
The poly(3-hydroxybutyrate)(PHB)/poly(ethylene glycol)(PEG) grafting copolymer was successfully prepared by PHB and acrylate groups ended PEGM using AIBN as initiator. The crystallization behavior, thermal stability and environmental biodegradability of PHB/PEG grafting copolymers were investigated with differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and Biodegradation test in vitro. In the results, all the grafting copolymers were found to show the X-ray diffraction arising from the PHB crystal lattice, while none of the PEG crystallized peaks could be found even though the graft percent reached 20%. This result indicated that PEG molecules were randomly grafted onto PHB chain. The thermal properties measured by DSC showed that the melting temperature(Tm) and glass transition temperature (Tg) were both shifted to lower temperature with the graft percent increasing, and this broadened the narrow processability window of PHB. According to TGA results, the thermal stability of the grafting copolymers is not changed compared to pure PHB. From the biodegradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the PEG grafting ratio. In another words, the biodegradation profiles of PHB/PEG grafting copolymer can be controlled. These properties make PHB/PEG grafting copolymer have promising potential applications especially in agriculture fields.  相似文献   

20.
Block copolymer micelles with aldehyde functionality were prepared in aqueous medium by dialyzing the N,N-dimethylacetamide solution of α-acetoxy-poly(ethylene glycol)-poly( , -lactide) block copolymer (acetal-PEG–PDLLA) against water, followed by mild acid treatment to convert the acetal moiety of the micelle to the aldehyde group. Peptidyl ligands (phenylalanine (Phe) and tyrosyl–glutamic acid (Tyr–Glu)) were then chemically conjugated to the micelle through Schiff base formation and successive reductive amination using NaBH3CN. Micelles with peptidyl ligands thus prepared have a size of approximately 40 nm with extremely narrow distribution (μ2/ 2<0.1) based on cumulant analysis of dynamic light scattering. A maximum 53% of the PEG-chain end of the micelle could be converted into peptidyl groups. Zeta potential values of Tyr–Glu derivatized micelles were well correlated with the amount of conjugated ligands, controllable over the range of 0 to−9 mV in sodium phosphate buffer (pH 7.4, 10 mM). These micelles with peptidyl ligands may have a utility for exploring the effect of the surface charge on the pharmacokinetic behavior of particulate systems as well as for modulated drug delivery where cellular peptidyl receptors play a substantial role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号