首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis acid-mediated conjugate addition of alkyl radicals to a differentially protected fumarate 10 produced the monoalkylated succinates with high chemical efficiency and excellent stereoselectivity. A subsequent alkylation or an aldol reaction furnished the disubstituted succinates with syn configuration. The chiral auxiliary, 4-diphenylmethyl-2-oxazolidinone, controlled the stereoselectivity in both steps. Manipulation of the disubstituted succinates obtained by alkylation furnished the natural products (-)-enterolactone, (-)-arctigenin, and (-)-isoarctigenin. The overall yields for the target natural products were 20-26% over six steps. Selective functionalization of the disubstituted succinates obtained by aldol condensation gave the paraconic acid natural products (-)-nephrosteranic acid (8) and (-)-roccellaric acid (9). The overall yield of the natural products 8 and 9 over four steps was 53% and 42%, respectively.  相似文献   

2.
The remote label method was used to measure primary and secondary (18)O isotope effects in the alkaline hydrolysis of O,O-diethylphosphorylcholine iodide (DEPC) and the primary (18)O effect in the alkaline hydrolysis of O,O-diethyl-m-nitrobenzyl phosphate (DEmNBP). Both the leaving group of interest (choline or m-nitrobenzyl alcohol) and ethanol can be ejected during hydrolysis due to the similarity of their pK values. The heavy-atom isotope effects were measured by isotope ratio mass spectrometry. Parallel reaction and incomplete labeling corrections were made for both systems. DEPC has a primary (18)O isotope effect of 1.041 +/- 0.003 and a secondary (18)O isotope effect of 1.033 +/- 0.002. The primary (18)O isotope effect for DEmNBP was 1.052 +/- 0.003. These large effects suggest a highly associative transition state in which the nucleophile approaches very close to the phosphorus atom to eject the leaving group. The large values are also indicative of a large compression, or general movement, on the reaction coordinate.  相似文献   

3.
Abstract— A new photolabeling agent, N-[4–(3-chlorodiazirin-3-yl)benzoyl]glycine (CDBG), a carbene generator, was synthesized. The incorporation of its photolytic products into egg white lysozyme was studied using flash photolysis and compared with incorporation of N-(4-azido-2-nitro-phenyl)-2-amino ethane sulfonate (NAPT) products into lysozyme and bovine pancreatic ribonuclease A. There was considerable additional incorporation of photolysis products into ribonuclease and lysozyme after termination of flash photolysis when NAPT was used but no additional incorporation when CDBG was used. Protein labeled with NAPT retained the label poorly during electrophoresis in sodium dodecyl sulfate. Lysozyme labeled with CDBG lost little label upon electrophoresis. Neither label was well retained during electrophoresis in 8 M urea. Peptic and tryptic peptides from CDBG labeled lysozyme were differentially labeled.  相似文献   

4.
Natural product discovery has been boosted by genome mining approaches, but compound purification is often still challenging. We report an enzymatic strategy for “stable isotope labeling of phosphonates in extract” (SILPE) that facilitates their purification. We used the phosphonate methyltransferase DhpI involved in dehydrophos biosynthesis to methylate a variety of phosphonate natural products in crude spent medium with a mixture of labeled and unlabeled S‐adenosyl methionine. Mass‐guided fractionation then allowed straightforward purification. We illustrate its utility by purifying a phosphonate that led to the identification of the fosfazinomycin biosynthetic gene cluster. This unusual natural product contains a hydrazide linker between a carboxylic acid and a phosphonic acid. Bioinformatic analysis of the gene cluster provides insights into how such a structure might be assembled.  相似文献   

5.
A convenient approach to compute kinetic isotope effects (KIEs) in condensed phase chemical reactions is via path integrals (PIs). Usually, the primitive approximation is used in PI simulations, although such quantum simulations are computationally demanding. The efficiency of PI simulations may be greatly improved, if higher-order Trotter factorizations of the density matrix operator are used. In this study, we use a higher-order PI method, in conjunction with mass-perturbation, to compute heavy-atom KIE in the decarboxylation of orotic acid in explicit sulfolane solvent. The results are in good agreement with experiment and show that the mass-perturbation higher-order Trotter factorization provides a practical approach for computing condensed phase heavy-atom KIE.  相似文献   

6.
建立稳定同位素iTRAQ标记/高效液相色谱-串联质谱法同时定量分析人体中42种氨基酸的方法.人生物样本经磺基水杨酸沉淀蛋白,稳定同位素iTRAQ-115衍生化后,加入iTRAQ-114同位素标记的氨基酸内标液进样,选用AAA-C18色谱柱,以水乙腈(含有0.01%七氟丁酸、0.1%甲酸)为流动相,采用梯度洗脱进行分离,选用3200QTRAP型质谱仪的多重反应监测(MRM)扫描方式进行检测.同位素内标消除了系统误差,实现了氨基酸的定量分析,42种氨基酸及同分异构体均能基线分离.本方法快速、灵敏、专属性强、高通量,可用于临床氨基酸代谢疾病的诊疗和营养评估.  相似文献   

7.
Decarboxylative protonation is a general deletion tactic to replace polar carboxylic acid groups with hydrogen or its isotope. Current methods rely on the pre-activation of acids, non-sustainable hydrogen sources, and/or expensive/highly oxidizing photocatalysts, presenting challenges to their wide adoption. Here we show that a cooperative iron/thiol catalyst system can readily achieve this transformation, hydrodecarboxylating a wide range of activated and unactivated carboxylic acids and overcoming scope limitations in previous direct methods. The reaction is readily scaled in batch configuration and can be directly performed in deuterated solvent to afford high yields of d-incorporated products with excellent isotope incorporation efficiency; characteristics not attainable in previous photocatalyzed approaches. Preliminary mechanistic studies indicate a radical mechanism and kinetic results of unactivated acids (KIE=1) are consistent with a light-limited reaction.  相似文献   

8.
Intermolecular (13)C kinetic isotope effects (KIEs) for the Roush allylboration of p-anisaldehyde were determined using a novel approach. The experimental (13)C KIEs fit qualitatively with the expected rate-limiting cyclic transition state, but they are far higher than theoretical predictions based on conventional transition state theory. This discrepancy is attributed to a substantial contribution of heavy-atom tunneling to the reaction, and this is supported by multidimensional tunneling calculations that reproduce the observed KIEs.  相似文献   

9.
Shin-ichi Kato  Makoto Ojika 《Tetrahedron》2004,60(50):11427-11434
In a luminous ostracod Cypridina (Vargula) hilgendorfii, Cypridina luciferin with an imidazopyrazinone structure (3,7-dihydroimidazopyrazin-3-one) is utilized for the luminescence reaction. To identify the biosynthetic units of Cypridina luciferin, the stable isotope labeled compounds were examined by feeding experiments with living Cypridina specimens. The incorporation of the labeled compounds into Cypridina luciferin was identified by the method of LC/ESI-TOF-MS analyses and these results suggested that l-tryptophan, l-arginine and l-isoleucine are structural units of Cypridina luciferin.  相似文献   

10.
Huang YQ  Liu JQ  Gong H  Yang J  Li Y  Feng YQ 《The Analyst》2011,136(7):1515-1522
In order to quantitatively study the jasmonate biosynthetic pathway, we chemically synthesized a pair of isotope mass probes and established a labeling protocol. The pair of mass probes used in our work were ω-bromoacetonylpyridinium bromide (BPB) and d(5)-ω-bromoacetonylpyridinium bromide (d(5)-BPB), which contain carboxylic acid reactive groups, isotopically labeled groups and permanent positive charges. High performance liquid chromatography (HPLC) and electrospray ionization quadrupole-time of flight mass spectrometry (ESI-QTOF-MS) were used for the detection of labeled standard mixtures and plant samples. In comparison to negative mode electrospray ionization detection of unlabeled analytes, the ESI signal of reverse charge labeled compounds was shown to improve by 20- to 80-fold. Accurate relative quantification was achieved as no isotopic effects of the different isotope labeled phytohormones during RP/SCX mixed-mode liquid chromatographic separation were observed. A data analysis method was established for analyzing metabolic pathways using our labeling strategy. We then applied our method and examined the jasmonate biosynthetic pathway of rice under salt stress and the premature senescence mutant. Here we found that under salt stress conditions, rice showed up-regulation in (13S)-hydroperoxyoctadecatrienoic acid (HOPT), cis-(+)-12-oxophytodienoic acid (OPDA), 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid (OPC-8) and jasmonoyl-valine (JA-Val) levels, while α-linolenic acid (LA) and jasmonic acid (JA) showed down-regulation, and three components (HPOT, OPC-8 and JA-Val) were accumulated. The premature senescence mutant showed up-regulation in all major components of the jasmonate biosynthetic pathway with the exception of LA, and an accumulation of HPOT, OPC-6 and JA-Val. This study demonstrates that our chemical stable isotope labeling strategy can be used as a powerful tool for metabolic pathway analysis of phytohormones in plants.  相似文献   

11.
The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 μmol.mL(-1) in samples of biological origin.  相似文献   

12.
Quantitative or comparative proteome analysis was initially performed with 2-dimensional gel electrophoresis with the inherent disadvantages of being biased towards certain proteins and being labor intensive. Alternative mass spectrometry-based approaches in conjunction with gel-free protein/peptide separation have been developed in recent years using various stable isotope labeling techniques. Common to all these techniques is the incorporation, biosynthetically or chemically, of a labeling moiety having either a natural isotope distribution of hydrogen, carbon, oxygen, or nitrogen (light form) or being enriched with heavy isotopes like deuterium, (13)C, (18)O, or (15)N, respectively. By mixing equal amounts of a control sample possessing for instance the light form of the label with a heavy-labeled case sample, differentially labeled peptides are detected by mass spectrometric methods and their intensities serve as a means for direct relative protein quantification. While each of the different labeling methods has its advantages and disadvantages, the endoprotease (16)O-to-(18)O catalyzed oxygen exchange at the C-terminal carboxylic acid is extremely promising because of the specificity assured by the enzymatic reaction and the labeling of essentially every protease-derived peptide. We show here that this methodology is applicable to complex biological samples such as a subfraction of human plasma. Furthermore, despite the relatively small mass difference of 4 Da between the two labeled forms, corresponding to the exchange of two oxygen atoms by two (18)O isotopes, it is possible to quantify differentially labeled proteins on an ion trap mass spectrometer with a mass resolution of about 2000 in automated data dependent LC-MS/MS acquisition mode. Post column sample deposition on a MALDI target parallel to on-line ESI-MS/MS enables the analysis of the same compounds by means of ESI- and MALDI-MS/MS. This has the potential to increase the confidence in the quantification results as well as to increase the sequence coverage of potentially interesting proteins by complementary peptide ionization techniques. Additionally the paired y-ion signals in tandem mass spectra of (16)O/(18)O-labeled peptide pairs provide a means to confirm automatic protein identification results or even to assist de novo sequencing of yet unknown proteins.  相似文献   

13.
Biosyntheses of lambertellols A (1) and B (2) as well as lambertellin (3) were investigated by isotope labeling experiments. Nearly 40% of specific incorporation of [1,2-(13)C(2)]acetate was achieved, and all the carbons in 1 and 2 were labeled. This high incorporation of the labeled acetate was realized by providing INADEQUATE spectra by employing only 0.4 and 0.7 mg of 1 and 2, respectively. Our studies revealed that 1-3 are biogenetically synthesized via loss of two carbons from octameric acetate. A biological assay against Monilinia fructicola revealed those remarkably inhibited hyphal germinations. However, neither of them killed the spores immediately, even in high concentration. These conditions induced the formation of microconidia.  相似文献   

14.
We report the total synthesis of (-)-N-methylwelwitindolinone C isonitrile, in addition to the total syntheses of the 3-hydroxylated welwitindolinones. Our routes to these elusive natural products feature the strategic use of a deuterium kinetic isotope effect to improve the efficiency of a late-stage nitrene insertion reaction. We also provide a computational prediction for the stereochemical configuration at C3 of the hydroxylated welwitindolinones, which was confirmed by experimental studies.  相似文献   

15.
The products and dynamics of the reactions (18)O((3)P)+NO(2) and (18)O((1)D)+NO(2) have been investigated using crossed beams and provide new constraints on the structures and lifetimes of the reactive nitrogen trioxide intermediates formed in collisions of O((3)P) and O((1)D) with NO(2). For each reaction, two product channels are observed - isotope exchange and O(2)+NO formation. From the measured product signal intensities at collision energies of ~6 to 9.5 kcal∕mol, the branching ratio for O(2)+NO formation vs. isotope exchange for the O((3)P)+NO(2) reaction is 52(+6∕-2)% to 48(+2∕-6)%, while that for O((1)D)+NO(2) is 97(+2∕-12)% to 3(+12∕-2)%. The branching ratio for the O((3)P)+NO(2) reaction derived here is similar to the ratio measured in previous kinetics studies, while this is the first study in which the products of the O((1)D)+NO(2) reaction have been determined experimentally. Product energy and angular distributions are derived for the O((3)P)+NO(2) isotope exchange and the O((1)D)+NO(2)→O(2)+NO reactions. The results demonstrate that the O((3)P)+NO(2) isotope exchange reaction proceeds by an NO(3)? complex that is long-lived with respect to its rotational period and suggest that statistical incorporation of the reactant (18)O into the product NO(2) (apart from zero point energy isotope effects) likely occurs. In contrast, the (18)O((1)D)+NO(2)→O(2)+NO reaction proceeds by a direct "stripping" mechanism via a short-lived (18)O-O-NO? complex that results in the occurrence of (18)O in the product O(2) but not in the product NO. Similarly, (18)O is detected in O(2) but not NO for the O((3)P)+NO(2)→O(2)+NO reaction. Thus, even though the product energy and angular distributions for O((3)P)+NO(2)→O(2)+NO derived from the experimental data are uncertain, these results for isotope labeling under single collision conditions support previous kinetics studies that concluded that this reaction proceeds by an asymmetric (18)O-O-NO? intermediate and not by a long-lived symmetric NO(3)? complex, as earlier bulk isotope labeling experiments had concluded. Applicability of these results to atmospheric chemistry is also discussed.  相似文献   

16.
A stereoselective synthesis of (25S)-Δ(1)-, (25S)-Δ(1,4)-, (25S)-Δ(1,7)-, (25S)-Δ(8(14))-, (25S)-Δ(4,6,8(14))-dafachronic acid, methyl (25S)-Δ(1,4)-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ(1,4)-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids.  相似文献   

17.
Tetronate antibiotics, a growing family of natural products featuring a characteristic tetronic acid moiety, are of importance and of particular interest for their typical structures, especially the spirotetronate structure, and corresponding versatile biological activities. Considerable efforts have persistently performed since the first tetronate was isolated, to elucidate the biosynthesis of natural tetronate products, by isotope-labeled feeding experiments, genetical characterization of biosynthetic gene clusters, and biochemical reconstitution of key enzymatic catalyzed reactions. Accordingly, the biosynthesis of spirotetronates has been gradually determined, including biosynthesis of a polyketide-derived backbone for spirotetronate aglycone, incorporation of a glycerol-derived three-carbon unit into tetronic acid moiety, formation of mature aglycone via Diels-Alder-like reaction, and decorations of aglycone with various deoxysugar moieties. In this paper, the biosynthetic investigations of natural tetronates are well documented and a common biosynthetic route for this group of natural products is summarized accordingly.  相似文献   

18.
Multistep hydrogen isotope exchange reactions, such as the íonization of a carbon acid via a carbanion intermediate in a protic solvent, when conducted using an isotopic tracer to monitor the exchange, have the unusual feature that their rate-determining steps always refer to the transfer of the tracer isotope and never to the isotope present in macroscopic amounts. This property of these reactions is discussed and rationalized using a free energy versus reaction coordinate diagram. It is further shown that this property does not invalidate a commonly used method of measuring kinetic isotope effects on carbon acid ionization in which rates of incorporation of tritium tracers into RH and RD substrates are compared, despite the fact that tritium transfer is rate determining in both exchanges, but it is valid only if initial rate measurements are used. When the comparison is made in a protio solvent, e.g., H2O, the portion of the initial reaction which may be used depends strongly on the magnitude of the isotope effect. It ranges from less than 1% tritium incorporation for large isotope effects to 10% or more for isotope effects near unity. On the other hand, when a deuterated solvent, e.g., D2O, is used, the range of validity of the method for large isotope effects is extended dramatically.  相似文献   

19.
Precursors and advanced intermediates for phosphonopeptide K-26 biosynthesis were synthesized and incorporation studies in Astrosporangium hypotensionis suggest a new mechanism of C-P bond formation in aromatic phosphonates.  相似文献   

20.
The selective oxidation of n-butane to maleic acid catalyzed by vanadium phosphates (VPO) is one of the most complex partial oxidation reactions used in industry today. Numerous reaction mechanisms have been proposed in the literature, many of which have butenes, butadiene, and furan as reaction intermediates. We have developed an experimental protocol to study the mechanism of this reaction in which (13)C-isotopically labeled n-butane is flowed over a catalyst bed and the reaction products are analyzed using (13)C NMR spectroscopy. This protocol approximates the conditions found in an industrial reactor without requiring an exorbitant amount of isotopically labeled material. When [1,4-(13)C]n-butane reacted on VPO catalysts to produce maleic acid and butadiene, the isotopic labels were observed in both the 1,4 and 2,3 positions of butadiene and maleic acid. The ratio of label scrambling was typically 1:20 for the 2,3:1,4 positions in maleic acid. For butadiene, the ratio of label scrambling was consistently much higher, at 2:3 for the 2,3:1,4 positions. Because of the discrepancy in the amount of label scrambling between maleic acid and butadiene, butadiene is unlikely to be the primary reaction intermediate for the conversion of n-butane to maleic anhydride under typical industrial conditions. Ethylene was always observed as a side product for n-butane oxidation on VPO catalysts. Fully (13)C-labeled butane produced about 5-13 times as much isotopically labeled ethylene as did [1,4-(13)C]butane, indicating that ethylene was produced mainly from the two methylene carbons of n-butane. When the reaction was run under conditions which minimize total oxidation products such as CO and CO(2), the amounts of ethylene and carbon oxides produced from fully (13)C-labeled butane were almost equal. This strongly suggests that the total oxidation of n-butane on VPO catalysts involves the oxidation and abstraction of the two methyl groups of n-butane, and the two methylene groups of n-butane form ethylene. An organometallic mechanism is proposed to explain these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号