首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA), a second-generation photosensitizer currently in phase II clinical trials, were investigated in homogeneous solution. Absorption, fluorescence, triplet-state, singlet oxygen (O2(1Δg)) sensitization studies and photobleaching experiments are reported. The ground state of this chlorin-type molecule shows a strong absorbance in the red (λ≈ 688 nm, ?≈ 33 000 M?1 cm?1 in organic solvents). For the singlet excited state the following data were determined in methanol: energy level, Es= 42.1 kcal mol?1, lifetime, Φf= 5.2 ns and fluorescence quantum yield, Φf= 0.05 in air-saturated solution. The triplet state of BPD-MA has a lifetime, τf >. 25 ns, an energy level, ET= 26.9 kcal mol?1 and the molar absorption coefficient is ?T= 26 650 M?1 cm?1 at 720 nm. A dramatic effect of oxygen on the fluorescence (φf) and intersystem crossing (φT) quantum yields has been observed. The BPD-MA presents rather high triplet (φT= 0.68 under N2-saturated conditions) and singlet oxygen (φΔ= 0.78) quantum yields. On the other hand, the presence of oxygen does not significantly modify the photobleaching of this photostable compound, the photodegradation quantum yield (φPb) of which was found to be on the order of 5 × 10?5 in organic solvents.  相似文献   

2.
The yields, lifetimes and spectra of singlet 1Au (S1) and triplet 3Au (T1) emissions from glyoxal vapor (0.003 to 10 torr) have been measured after initially pumping levels about 1000 cm?1 above the S1 zero-point level with the 4358 A Hg line and with flash excitation centered at 4345 A. Only S1 emission is observed at the lowest pressures. The singlet fluorescence contains appreciable structure from the zero-point level even when the hard sphere collision interval exceeds the radiative lifetime calculated from the absorption coefficient. Implications of long lifetimes (due to S1 - T1 vibronic interactions) are not confirmed by pulsed excitation studies. Both S1 and T1 emissions are observed at pressures above about 0.1 tert and both are self-quenched. However, added gases such as cyclohexane, argon, and helium selectively quench only S1 emission. This quenching is collision-induced S1→T1 intersystem crossing with cross sections of order 0.1 hard sphere for transitions from the S1 zero-point level. The triplet yield in 0.2 torr of pure glyoxal is probably near unity, and the subsequent crossing T1 → S0, if it occurs, lies in the statistical limit. Indications of fast nonradiative decay from high triplet vibrational levels are seen in the phosphorescence yields. Self-quenching of the triplet state appears to be associated with the photochemical activity of glyoxal.  相似文献   

3.
Abstract— Pyrazinopsoralen (PzPs), a new monofunctional psoralen, has a UV absorption spectrum similar to other psoralens except that it absorbs more strongly in the long-UVA than 8-methoxypsoralen. The solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the π,π* state like other psoralen derivatives. It shows a much lower fluorescence quantum yield (0.0008 in ethanol at room temperature) than the other psoralens as expected by the increased proximity effect (vibronic perturbation) due to close 1(n,π*) to 1(π,π*) states. The fluorescence lifetime was 1.05 ns in methylcyclohexane with a single exponential decay, while more than two components were observed in other solvents with the short-lived component being the major (>95%). The triplet state of PzPs could not be detected by phosphorescence, laser flash excitation (T-T absorption) and singlet oxygen formation probably due to very low φisc, or short lifetime of the triplet state (τT) caused by the fast T1→ S0 intersystem crossing.  相似文献   

4.
The aromatic thioketone xanthione has been investigated by means of the optically detected magnetic resonance (ODMR) technique in a n-hexane matrix at ≈ 1.1 K. It was established that the short-lived red emission, which is characteristic for many thione molecules, is phosphorescence. At high temperatures (77 K) this phosphorescence originates mainly (>80%) from the T1z (n, π*) sublevel (kz(r) >kx(r), ky(r). At low temperature (1.1 K) the intersystem crossing following S2 (π, π*) ← S0 excitation is a highly spin-sublevel selective process which populates predominantly the T1x and T1y, levels. Hence, the slow spin—lattice relaxation phosphorescence at low temperature originates from these sublevels. A value of 0.0611 cm?1 was obtained for the zero-field parameter |E|/hc. A lower limit of 0.66 cm?1 has been found for the zero-field parameter |D|/hc. This value is considerably larger than those observed for ketones, and it is shown that spin—orbit coupling contributes strongly to the zero-field splitting.  相似文献   

5.
An organic crystal of 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (pCBP) exhibits time‐dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well‐separated, long‐persistent thermally activated delayed fluorescence (TADF) and room‐temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol?1. The good separation of TADF and RTP is due to a 11.8 kcal mol?1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited‐state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

6.
The excited states of UV absorber, ethylhexyl methoxycrylene (EHMCR) have been studied through measurements of UV absorption, fluorescence, phosphorescence and electron paramagnetic resonance (EPR) spectra in ethanol. The energy levels of the lowest excited singlet (S1) and triplet (T1) states of EHMCR were determined. The energy levels of the S1 and T1 states of EHMCR are much lower than those of photolabile 4‐tert‐butyl‐4′‐methoxydibenzoylmethane. The energy levels of the S1 and T1 states of EHMCR are lower than those of octyl methoxycinnamate. The weak phosphorescence and EPR Bmin signals were observed and the lifetime was estimated to be 93 ms. These facts suggest that the significant proportion of the S1 molecules undergoes intersystem crossing to the T1 state, and the deactivation process from the T1 state is predominantly radiationless. The photostability of EHMCR arises from the 3ππ* character in the T1 state. The zero‐field splitting (ZFS) parameter in the T1 state is D** = 0.113 cm?1.  相似文献   

7.
The fluorescence and phosphorescence from benzil in dilute benzene and cyclohexane solutions (2 × 10−4 M) were studied by both conventional luminescence and time-correlated single-photon techniques in the temperature range 8 – 69 °C. The fluorescence (λ = 502 nm) did not show a substantial temperature dependence and was free from thermal and triplet-triplet annihilation delayed contributions at the low concentration used. The phosphorescence (λ = 562 nm) was temperature dependent and its decay was controlled by an activation energy (Ea = 7.4 ± 0.5 kcal mol−1) which was slightly larger than the spectroscopic single-triplet splitting (6.1 kcal mol−1). The photophysical parameters derived from the lifetimes of the two emissions was not consistent with the model of thermal equilibration between S1 and T1.  相似文献   

8.
Fluorescent nucleoside analogs, commonly used to explore nucleic acid dynamics, recognition and damage, frequently respond to a single environmental parameter. Herein we address the development of chromophores that can simultaneously probe more than one environmental factor while having each associated with a unique spectroscopic signature. We demonstrate that an isomorphic emissive pyridine‐modified 2‐deoxy‐uridine 1 , containing multiple sensory elements, responds to changes in acidity, viscosity, and polarity. Protonation of the pyridine moiety (pKa 4.4) leads to enhanced emission (λem=388 nm) and red‐shifted absorption spectra (λabs=319 nm), suggesting the formation of an intramolecular hydrogen bond with the neighboring pyrimidine carbonyl. This “locked” conformation can also be mimicked by increasing solvent viscosity, resulting in a stark enhancement of emission quantum yield. Finally, increasing solvent polarity substantially impacts the chromophore’s Stokes shift [from 5.8×103 cm?1 at ET(30)=36.4 kcal mol?1 to 9.3 ×103 cm?1 at ET(30)=63.1 kcal mol?1]. The opposite effect is seen for the impact of solvent polarity of the protonated form. The characteristic photophysical signature induced by each parameter facilitates the exploration of these environmental factors both individually and simultaneously.  相似文献   

9.
The solvatochromic behavior of a penta‐tert‐butyl prydinium N‐phenolate betaine dye was studied using UV‐visible spectrophotometry in several binary mixture solvents. The solvent polarity parameter, ET (1) (kcal. mol?1) was calculated from the position of the longest‐wavelength intramolecular charge transfer absorption band of this penta‐tert‐butyl betaine dye. For binary solvent mixtures, all plots of ET (1) versus the mole fraction of a more polar component are nonlinear owing to preferential solvation of the probe by one component of the binary solvent mixture. In the computation of ET (1) it was assumed that the two solvents mixed interact to form a common structure with an ET (1) value not always intermediate between those of the two solvents mixed. The results obtained are explained by the strong synergism observed for some of the binary mixtures with strong hydrogen bond donors (HBD) solvents such as alcohols.  相似文献   

10.
Triplet benzene (3B1U sensitized decomposition of H2CO in the gas phase gives an appreciable yield of “molecules” H2 and CO. This evidence supports that T1?S0 intersystem crossing in formaldehyde is an efficient and important process. The implication of this is that S1?T1 intersystem crossing could be important, more so than recognized previously, in the photochemistry of (n,π*) state formaldehyde.  相似文献   

11.
The phosphorescence emission of perylene bisimide derivatives has been rarely reported. Two novel ruthenium(II) and iridium(III) complexes of an azabenz‐annulated perylene bisimide (ab‐PBI), [Ru(bpy)2(ab‐PBI)][PF6]2 1 and [Cp*Ir(ab‐PBI)Cl]PF6 2 are now presented that both show NIR phosphorescence between 750–1000 nm in solution at room temperature. For an NIR emitter, the ruthenium complex 1 displays an unusually high quantum yield (Φp) of 11 % with a lifetime (τp) of 4.2 μs, while iridium complex 2 exhibits Φp<1 % and τp=33 μs. 1 and 2 are the first PBI‐metal complexes in which the spin–orbit coupling is strong enough to facilitate not only the Sn→Tn intersystem crossing of the PBI dye, but also the radiative T1→S0 transition, that is, phosphorescence.  相似文献   

12.
The extension of the solvent influence of the shell into the volume of a polar medium was examined by means of anti‐collinear dipoles on the basis of the ET(30) solvent polarity scale (i.e., the molar energy of excitation of a pyridinium‐N‐phenolatebetaine dye; generally: ET=28 591 nm kcal mol?1/λmax) where no compensation effects were found. As a consequence, solvent polarity effects are concentrated to a very thin layer of a few thousand picometres around the solute where extensions into the bulk solvent become unimportant. A parallelism to the thin surface layer of water to the gas phase is discussed.  相似文献   

13.
Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers ( o -, m - and p - BrTAB ) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o - BrTAB , the short lifetime component is ascribed to the T1M state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T1A state of an aggregate, with multiple intermolecular interactions existing in crystalline o - BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.  相似文献   

14.
The activation mechanism of the nitrous oxide (N2O) with the Ta(NH2)3 complex on the singlet and triplet potential energy surfaces has been investigated using the hybrid exchange correlation functional B3LYP. The minimum energy crossing point (MECP) is located by using the methods of Harvey et al. The rate-determining step of the N–O activation reaction is the intersystem crossing from 1 2 to 3 2. The reacting system will change its spin multiplicities from the singlet state to the triplet state near MECP-1, which takes place with a spin crossing barrier of 32.5 kcal mol?1, and then move on the triplet potential energy surface as the reaction proceeds. Analysis of spin–orbit coupling (SOC) using localized orbitals shows that MECP-1 will produce the significant SOC matrix element, the value of SOC is 272.46 cm?1, due to the electron shift between two perpendicular π orbitals with the same rotation direction and the contribution from heavy atom Ta. The rate coefficients are calculated using Non-adiabatic Rice-Ramsperger-Kassel-Marcus (RRKM). Results indicate that the coefficients, k(E), are exceedingly high, k(E) > 1012 s?1, for energies above the intersystem crossing barrier (32.5 kcal mol?1); however, in the lower temperature range of 200–600 K, the intersystem crossing is very slow, k(T) < 10?6 s?1.  相似文献   

15.
Time-resolved thermal-lensing was used to measure the absolute quantum yield (φΔ) of singlet molecular oxygen, O2(1Δg), produced by hematoporphyrin photosensitization in ethanol. Deuteration of the solvent did not affect the value of φΔ. The value of φΔ= 0.53 was then used as reference to evaluate φΔ in O2 (1Δg) phosphorescence experiments with the related porphyrins, monohydroxyethylvinyl deuteroporphyrin and dihematoporphyrin ether. The φΔ values, in conjunction with the respective quantum yields of intersystem crossing (measured using a nanosecond laser flash photolysis technique) served to evaluate efficiencies, SΔ, of O2 (1Δg) production from the porphyrin triplet states. The lifetime TΔ in monodeuterated ethanol was measured as 29 ± 3 μs and 30 ± 1 (xs by time-resolved thermal lensing and phosphorescence detection, respectively. TΔ in ethanol and fully deuterated ethanol were in good agreement with values reported in the literature.  相似文献   

16.
Abstract— Absorption and emission techniques were used to characterize the ground (S0), singlet (S|) and triplet states (T1) of gilvocarcin V (GV) and gilvocarcin M (GM) in different solvents. Aggregation of GV with dimerization constant equal to 7800 M?1is observed in 10% dimethyl-sulfoxide (DMSO)/water. The photophysical properties of the S, state of these molecules are more sensitive to changes in solvent characteristics than the corresponding ground states. The absorption of visible light by GV and GM results in a higher dipole moment of the excited state causing a red shift in the fluorescence spectra with increasing solvent polarity. The fluorescence quantum yield remains practically unchanged with changes in solvent properties unless water is present as a co-solvent. Both φf and φf values corresponding to GV in DMSO are larger than those of GM, whereas in 10% DMSO/H2O the opposite is observed. Thus, GV is more susceptible to other deactivation pathways besides emission in the presence of water than GM. The relative phosphorescence quantum yield (φp= 0.03) and the triplet energy (ET= 52 kcal/mol) of GV and GM are similar. The S0-S1 energy difference is 63 kcal/mol for GV, whereas for GM it is 67. Thus, the singlet-triplet energy difference is 11 and 15 kcal/mol, respectively. The PM3/CI calculated electronic structures of these compounds are consistent with the observed photophysical properties. The dark binding constants of GV to calf thymus DNA ([1.1–0.08] × 106M?1) are about an order of magnitude larger than those of GM ([0.24–0.018] × 106M?1) at different ionic strengths (0–2.00 M NaCl). Also, the number of gilvocarcin molecules bound per base pair is smaller for GM than for GV. These differences in dark DNA binding parameters between GV and GM could have implications in the large photocytotoxic ability of GV as compared to GM.  相似文献   

17.
Nitrogen position and internal heavy atom effects on the radiative and radiationless transitions from the lowest excited states of the isomeric azaphenanthrenes and some of their methyl, chlorine and bromine derivatives have been studied in E.P.A. solutions at 77 K. The nitrogen position affects the fluorescence and S1-T1 intersystem crossing rates more than the phosphorescence and T1-S0 intersystem crossing rates. Small differences in the behaviour of 9-azaphenanthrene are enhanced in non-hydroxylic solvents and at room temperature, and it is inferred that (n, π*) states play a more important role in the photophysical behaviour of this isomer. Halogen, substitution in all the isomers increases the phosphorescence rate, induces a smaller increase in the T1-S0 intersystem crossing rates and has a negligible effect on the fluorescence rate.  相似文献   

18.
An organic crystal of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (pCBP) exhibits time-dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well-separated, long-persistent thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol−1. The good separation of TADF and RTP is due to a 11.8 kcal mol−1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited-state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

19.
The specific heat, the melting heat and entropy, the vaporization heat of naphtalene disulfide (C10H6S2) and of diphenylene disulfide (C12H8S2) have been determined by differential scanning calorimetry (DSC).Over the temperature range examined the specific heat may be represented as follows:
where T is the temperature in degrees Kelvin, while melting heat, vaporization heat, melting entropy are for naphtalene disulfide: 3.10 kcal mol?1, 6.42 kcal mol?1, 7.87 cal deg? mol?1 and for diphenylene disulfide: 4.62 kcal mol?1, 6.90 kcal mol?1 and 11.87 cal deg?1 mol?1.  相似文献   

20.
Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N 1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S2 and S4 states both relax promptly through intersystem crossing to the triplet T1 state. The T1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号