首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

3.
The rate of ZnAl2O4 formation was measured for η-, γ-; and α- Al2O3 in order to distinguish the reactivity of them. The reactivity decreased as follows: η- > γ- > α-Al2O3. The reaction rate fitted to Jander's equation and the activation energies calculated were 33, 47 and 113 Kcal/mol for η-, γ- and α-Al2O3 systems, respectively. These differences are explained by an assumption that η- and γ-Al2O3 resulted in a ZnAl2O4 with imperfect spinel structure, but α-Al2O3 gave the perfect spinel structure. This assumption is based on the theoretical consideration of the activation energy needed for the diffusion-controlled reaction and date of lattice constant of each ZnAl2O4 obtained from three aluminas. The fact that η-Al2O3 shows very high reactivity compared with that of γ-Al2O3 was found to be explained on the basis of Jander's equation, a comparison of specific surface area and the defect structures of the aluminas.  相似文献   

4.
In flow tube studies of the quenching of O2(b1Σ), broad band emission of O2(b):M collision complexes was found to appear under the discrete rotational lines of the 0–0 band of the b1Σ → a1Δg electric quadrupole transition at higher oxygen pressures and on addition of foreign gases. Bimolecular rate constants for the collision-induced emission processes have been derived from the ratio of the intensities of the discrete lines and the continuum as well as from low-resolution measurements of the relative intensities of the ba and bX bands as a function of O2 and added gas pressure. They range from ≈10?21 cm3 s?1 for He to ≈4 × 10?19 cm3 s?1 for PCl3 vapor.  相似文献   

5.
6.
The kinetics of the deactivation of O2(1Σg+) is studied in real time. O2(1Σg+) is generated in this system by the O(1D) + O2 reaction following O3laser flash photolysis in the presence of excess O2, and it is monitored by its characteristic emission band at 762 nm. Quenching rate constants were obtained for O2, O3, N2, CO2, H2O, CF4and the rare gases. Since O(1D) is the precursor for the formation of O2(1Σg+), the addition of an O(1D) quencher effectively lowers the initial concentration of O2(1Σg+). By measuring the initial intensity of the 762 nm fluorescence signal, the relative quenching efficiencies were determined for O(1D) quenching by N2, CO2, Xe, and Kr with respect to O2; the results are in good agreement with literature values.  相似文献   

7.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

8.
9.
10.
The rate constants of O2(1Δg) with aliphatic alcohols, terpenes, unsaturated hydrocarbons, chlorinated hydrocarbons, oxygen, and diamines have been studied in thepresence of NO2. The rate constants for oxygen, 1,2-ethane diamine, and 1,2-propane diamine are (9.9 ± 0.4) × 102, (8.7 ± 0.7) × 104, and (1.4 ± 0.3) × 104 1/mol/s, respectively. The rate constants for all other compounds are less than the oxygen rate constant.  相似文献   

11.
Relaxation rates for O2(1Σg+) by nonradiative pathways have been determined using the fast-flow technique. O2(1Σg+) is formed from O2(1Δg) by an energy pooling process. O2(1Δg) is generated by passing purified oxygen through a microwave discharge. Oxygen atoms are removed by distilling mercury vapor through the discharge zone. It has been observed that the wall loss rate for O2(1Σg+) decreases with increasing pressure of oxygen and thus appears to be diffusion controlled. Quenching rate constants for O2, N2, and He have been determined and found to be (1.5 ± 0.1) × 104, (1.0 ± 0.05) × 106 and (1.2 ± 0.1) × 105 l./mol·sec, respectively.  相似文献   

12.
13.
β‐CdC2O4     
Crystals of an­hydrous cadmium oxalate, β‐[Cd(C2O4)], have been synthesized hydro­thermally and the crystal structure solved using single‐crystal X‐ray diffraction data. The Cd and oxalate ions lie about independent inversion centres. The structure consists of a three‐dimensional framework built from sheets of cadmium octahedra linked together by oxalate groups.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号