首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

2.
Fluorescence photobleaching of protoporphyrin IX (PpIX) during superficial photodynamic therapy (PDT), using 514 nm excitation, was studied in UVB-induced tumor tissue in the SKH-HR1 hairless mouse. The effects of different irradiance and light fractionation regimes upon the kinetics of photobleaching and the PDT-induced damage were examined. Results show that the rate of PpIX photobleaching (i.e., fluorescence intensity vs fluence) and the PDT damage both increase with decreasing irradiance. We have also detected the formation of fluorescent PpIX photoproducts in the tumor during PDT, although the quantity recorded is not significantly greater than generated in normal mouse skin, using the same light regime. The subsequent photobleaching of the photoproducts also occurs at a rate (vs fluence) that increases with decreasing irradiance. In the case of light fractionation, the rate of photobleaching increases upon renewed exposure after the dark period, and there is a corresponding increase in PDT damage although this increase is smaller than that observed with decreasing irradiance. The effect of fractionation is greater in UVB-induced tumor tissue than in normal tissue and the damage is enhanced when fractionation occurs at earlier time points. We observed a variation in the distribution of PDT damage over the irradiated area of the tumor: at high irradiance a ring of damage was observed around the periphery. The distribution of PDT damage became more homogeneous with both lower irradiance and the use of light fractionation. The therapeutic dose delivered during PDT, calculated from an analysis of the fluorescence photobleaching rate, shows a strong correlation with the damage induced in normal skin, with and without fractionation. The same correlation could be made with the data obtained from UVB-induced tumor tissue using a single light exposure. However, there was no such correlation when fractionation schemes were employed upon the tumor tissue.  相似文献   

3.
A comparative study of the cellular photosensitizing properties of protoporphyrin IX (PpIX) and photoprotoporphyrin (Ppp) was carried out in the transformed murine keratinocyte cell line, PAM 212. Time-course fluorescence studies were performed to determine the rate of uptake by cells together with fluorescence microscopy. The sensitized cells were laser irradiated with a range of light doses at 635 or 670 nm to determine the phototoxicity of the two compounds and to investigate their relative fluorescence photobleaching properties. Ppp showed enhanced phototoxicity at both its optimal activation wavelength of 670 nm (eight times more phototoxic than PpIX activated at its optimal wavelength of 635 nm for the same fluence) and at 635 nm (three times more phototoxic than PpIX at the same wavelength), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The photobleaching rate of Ppp in cells was found to be higher using 670 nm irradiation compared with that of PpIX at 635 nm irradiation. At 635 nm, however, the photobleaching rate of Ppp was comparable to that of PpIX. The photobleaching quantum yields of the two compounds in cells were found to be similar at approximately 5 x 10(-4), with the same value confirmed at both 670 and 635 nm irradiation for Ppp. The fluorescence lifetime of Ppp in cells was measured as 5.4 ns using time-correlated single photon counting.  相似文献   

4.
The characteristics of protoporphyrin IX (PPIX) fluorescence in superficial basal cell carcinoma (sBCC) and carcinoma in situ (Bowen's Disease, BD) following application of 5-aminolaevulinic acid (5-ALA) and its methyl ester (methyl aminolevulinate [MAL]) before, during and after photodynamic therapy (PDT) were investigated in 40 patients. Photosensitizer prodrug penetration can limit PDT efficacy and understanding the characteristics of PPIX fluorescence through fluorescence spectroscopy, may improve knowledge of photosensitizer delivery. Fluorescence intensity was assessed quantitatively, and the rate of photobleaching was determined by fitting an exponential decay. As a secondary end-point, PDT-induced pain was also measured continuously during treatment using a novel hand-held device, known as a pain logger. In vivo PPIX fluorescence was shown to decrease during irradiation, allowing the in vivo photobleaching of PPIX to be monitored. No significant difference was found between ALA- or MAL-induced PPIX fluorescence in lesions of sBCC and BD (P>0.05), indicating no detectable difference in PPIX kinetics for the two prodrugs as assessed by these measures. Pain, as assessed by the logger device, showed high interindividual variability and pain levels tended to be higher initially, decreasing during treatment. No difference was seen in pain experienced during ALA-or MAL-PDT (P>0.05).  相似文献   

5.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

6.
Photodynamic therapy (PDT) has received increased attention as a treatment modality for malignant tumors as well as non-oncologic diseases such as age-related macular degeneration (AMD). An alternative to excite the photosensitizer by the common one-photon absorption is the method of two-photon excitation (TPE). This two-photon photodynamic therapy has the potential of improving the therapeutic outcome due to a highly localized photodynamic effect. The present study investigated the two-photon excited PDT performing in vitro experiments where C6 rat glioma cells were irradiated with a pulsed and focused fs Ti:sapphire laser emitting light at 800 nm. The irradiance distribution of the laser beam was carefully analyzed before the experiment and the applied irradiance was known for each position within the irradiated cell layer. Cells were divided into four groups and one group was incubated with 5-ALA and irradiated 4-5h later. The survival of this group was tested after irradiation by means of ethidium bromide and acridine orange staining and compared to a control group, which was irradiated under the same conditions, but not incubated with 5-ALA before. Both groups showed necrotic areas depending on the applied irradiance, the value of which at the margin of the necrotic area could be deduced from its size. 5-ALA incubated cells became necrotic after irradiation with a mean irradiance above 6.1 x 10(10) W/cm(2), while non-incubated cells remained viable. Cells of both groups became necrotic when treated with an irradiance above 10.9 x 10(10) W/cm(2). The observed affected area of the cell layers was between 0.13 mm(2) and 1.10 mm(2). Since the irradiation of non-incubated cells below the mean power density of 10.9 x 10(10) W/cm(2) induced no necrosis, apparently no thermal damage was induced in the cells and necrosis of the 5-ALA incubated cells can be ascribed to the photodynamic effect induced by two-photon excitation. The successful photodynamic treatment of a large area of a monolayer cell culture induced by two-photon excitation offers new perspectives for photodynamic treatment modalities.  相似文献   

7.
The photodynamic effect of a photoproduct of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) was investigated in WiDr cells, a human adenocarcinoma cell line. The fluorescence excitation and emission spectra of PpIX and the photoproduct were measured. After 1, 3 or 5 min exposure of the ALA-incubated cells to 140 mW/cm2 light at 635 nm, the photoproduct — the chlorin photoprotoporphyrin (Ppp), had an emission band around 670 nm. The Ppp excitation peak at 670 nm is well separated from the PpIX peak at 635 nm. The outcome of photodynamic therapy (PDT) was determined by measuring intracellular fluorescence intensity of propidium iodide (PI) 2 h following PDT and methylene blue (MB) staining 24 h following PDT. A significant increase in the fluorescence intensity of PI was noted when the ALA-loaded cells were exposed to 670 nm light after exposure to 635 nm, indicating enhanced cell membrane inactivation induced by the photodynamic action of the photoproduct. However, the fraction of the cells that survived following the same treatment as measured by MB staining was not significantly affected based on an analysis of variance. The fluorescence of PpIX decayed significantly during 635 nm light exposure. Exposure to light at 670 nm does not lead to any photodegradation of PpIX. The fluorescence of Ppp was bleached during 670 nm light exposure. Exposure of Ppp at 670 nm gives no PpIX back. Thus, the phototransformation of PpIX to Ppp is probably not a reversible process.  相似文献   

8.
5-Aminolaevulinic acid (ALA) is a precursor of protoporphyrin IX (Pp IX) in the biosynthetic pathway for haem. Certain types of cells have a large capacity to synthesize Pp IX when exposed to an adequate concentration of exogenous ALA. Since the conversion of Pp IX into haem is relatively slow, such cells tend to accumulate photosensitizing concentrations of Pp IX. Pp IX photosensitization can be induced in cells of the epidermis and its appendages, but not in the dermis. Moreover, since ALA in aqueous solution passes readily through abnormal keratin, but not through normal keratin, the topical application of ALA in aqueous solution to actinic keratoses or superficial basal cell or squamous cell carcinomas induces Pp IX photosensitization that is restricted primarily to the abnormal epithelium. Subsequent exposure to photoactivating light selectively destroys such lesions. In our ongoing clinical trial of ALA-induced Pp IX photodynamic therapy, the response rate for basal cell carcinomas following a single treatment has been 90% complete response and 7.5% partial response for the first 80 lesions treated. The cosmetic results have been excellent, and patient acceptance has been very good.  相似文献   

9.
Fhit, the product of tumor suppressor fragile histidine triad (FHIT) gene, exhibits antitumor activity of still largely unknown cellular background. However, it is believed that Fhit-Ap(3)A or Fhit-AMP complex might act as a second class messenger in cellular signal transduction pathway involved in cell proliferation and apoptosis. We demonstrate here for the first time that the photosensitizer, protoporphyrin IX (which is a natural precursor of heme) binds to Fhit protein and its mutants in the active site in vitro. Furthermore, PpIX inhibits the enzymatic activity of Fhit. Simultaneously, PpIX shows lower binding capacity to mutant Fhit-H96N of highly reduced hydrolase activity. In cell-based assay PpIX induced HeLa cell death in Fhit and Fhit-H96N-dependent manner which was measured by means of MTT assay. Moreover, HeLa cells stably expressing Fhit or mutant Fhit-H96N were more susceptible to protoporphyrin IX-mediated photodynamic therapy (2J/cm(2)) than parental cells.  相似文献   

10.
Predicting the therapeutic outcome of photodynamic therapy (PDT) requires knowledge of the amount of cytoxic species generated. An implicit approach to assessing PDT efficacy has been proposed where changes in photosensitizer (PS) fluorescence during treatment are used to predict treatment outcome. To investigate this, in vitro experiments were performed in which Mat-LyLu cells were incubated in meta-tetra(hydroxyphenyl)chlorin (mTHPC) and then irradiated with 652 nm light. PS concentration, fluence rate and oxygenation were independently controlled and monitored during the treatment. Fluorescence of mTHPC was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony-formation assay. Singlet oxygen dose was calculated using four different models and was compared with cell survival. For the dose metric based on singlet oxygen-mediated PS photobleaching, a universal relationship between cell survival and singlet oxygen dose was found for all treatment parameters. Analysis of the concentration dependence of bleaching suggests that the lifetime of singlet oxygen within the cell is 0.05-0.25 micros. Generation of about 9 x 10(8) molecules of singlet oxygen per cell reduces the surviving fraction by 1/e.  相似文献   

11.
The copolymers of methacrylic acid with protoporphyrin IX (PPIX) and the metal complexes, zinc protoporphyrin IX and magnesium protoporphyrin IX were synthesised and characterised. Corresponding acrylic acid copolymers were also synthesised. The steady state absorption and fluorescence spectral properties of the macromolecular bound fluorophores PPIX, Zn-PPIX and Mg-PPIX were investigated. Poly(methacrylic acid) bound protoporphyrin IX, zinc protoporphyrin IX and magnesium protoporphyrin IX show an increase in the fluorescence intensity and lifetime with increase in the pH in the range 2-8 with a marked transition around pH 6.0-7.0. The fluorophore concentration in the dilute solution of the copolymers is micromolar and the fluorophore to the carboxylic acid monomer ratios in the copolymer is around 10−3. The molecular weight of the copolymers is 100 ± 10 kD. The fluorescence decay curves of all the fluorophore bound polymers follow biexponential decay fit independent of pH. Poly(MAA-co-PPIX) and poly(MAA-co-MgPPIX) undergo well marked pH induced structural transitions in the pH range of 6.0-7.0 whereas poly(MAA-co-ZnPPIX) undergoes pH induced structural transitions in the pH range of 4.0. In the case of polyacrylic acid copolymers the changes observed in the steady state and time resolved fluorescence studies are less marked. The distinct hydrophobic and hydrophilic environments experienced by the fluorophore bound to PMMA are attributed to the dynamics of the macromolecules in dilute aqueous solutions manifested by the α-methyl group present in the copolymer. The studies carried out using the fluorophores in the time windows from 2 ns to 12 ns indicate evolving trends in the dynamic coiling and reverse coiling of poly methacrylic acid chain.  相似文献   

12.
The response to photodynamic therapy (PDT) mediated by photosensitizer Photofrin was examined with Lewis lung carcinomas growing in either complement-proficient C57BL/6 (B6) or complement-deficient complement C3 knockout (C3KO) mice. The results reveal that Photofrin-PDT was more effective in attaining cures of tumors in C3KO than in B6 hosts. Colony-forming ability of cells from tumors excised immediately after Photofrin-PDT confirmed that the direct cell killing effect was more pronounced in C3KO than in B6 hosts. In contrast, PDT mediated by photosensitizer benzoporphyrin derivative (BPD) produced higher cure rates of tumors in B6 hosts than those in C3KO hosts. Determination of tumor C3 levels by ELISA showed that Photofrin-PDT induced markedly more pronounced complement activation than BPD-PDT. Measurements of tumor oxygen tension immediately after PDT by Eppendorf pO2 histograph showed that Photofrin-PDT induced a marked decline in the oxygenation of tumors growing in B6 mice that was much less pronounced in C3KO hosts. With BPD-PDT the oxygen tensions in tumors in B6 and C3KO hosts decreased to a similar extent. This study indicates that complement activation in PDT-treated tumors that varies with different photosensitizers is an important determinant of tumor oxygen limitation effects directly associated with photodynamic action.  相似文献   

13.
Photodynamic therapy (PDT) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. Maximizing the accumulation of the photosensitizer protoporphyrin IX (PpIX) within different cell types would be clinically useful. Dermatological PpIX-induced PDT regimes produce good clinical outcomes but this currently only applies when the lesion remains superficial. Also, as an adjuvant therapy for the treatment of primary brain tumors, fluorescence guided resection (FGR) and PDT can be used to highlight and destroy tumor cells unreachable by surgical resection. By employing iron chelators PpIX accumulation can be enhanced. Two iron-chelating agents, 1,2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) and dexrazoxane, were individually combined with the porphyrin precursors aminolevulinic acid (ALA), methyl aminolevulinate (MAL) and hexyl aminolevulinate (HAL). Efficacies of the iron-chelating agents were compared by recording the PpIX fluorescence in human squamous epithelial carcinoma cells (A431) and human glioma cells (U-87 MG) every hour for up to 6 h. Coincubation of ALA/MAL/HAL with CP94 resulted in a greater accumulation of PpIX compared to that produced by coincubation of these congeners with dexrazoxane. Therefore the clinical employment of iron chelation, particularly with CP94 could potentially increase and/or accelerate the accumulation of ALA/MAL/HAL-induced PpIX for PDT or FGR.  相似文献   

14.
Hexylester of 5-aminolevulinic acid (hALA) has been considered as an alternative to 5-aminolevulinic acid (ALA) for the treatment of malignancies of different origin. The present study addresses the ALA and hALA-induced PpIX pharmacokinetic profile using rat bladder carcinoma cells (AY27). The total PpIX content measured spectrofluorimetrically after extraction procedure at the end of 2 h incubation was at least 1.5-fold greater with hALA compared to ALA despite the difference in concentration of several orders between the two compounds (1 or 5 mM ALA and 5 or 10 x 10(-3) mM hALA). Considerable PpIX efflux was detected in the extracellular medium at the end of the incubation. With 5 mM ALA and 10 x 10(-3) mM hALA, PpIX build-up was continued beyond the incubation period pointing out to enzyme saturation in the biosynthetic pathway or/and the constitution of ALA reserve. Red laser light (lambda=630 nm) irradiation of AY27 cells after 2 h incubation with increasing ALA or hALA concentrations resulted in a nearly equal photocytotoxicity.  相似文献   

15.
Photodynamic therapy (PDT) is a combination of light with a lesion-localizing photosensitizer or its precursor to destroy the lesion tissue. PDT has recently become an established modality for several malignant and non-malignant conditions, but it can be further improved through a better understanding of the determinants affecting its therapeutic efficiency. In the present investigation, protoporphyrin IX (PpIX), an efficient photosensitizer either endogenously induced by 5-aminolevulinic acid (ALA) or exogenously administered, was used to correlate its subcellular localization pattern with photodynamic efficiency of human oesophageal carcinoma (KYSE-450, KYSE-70) and normal (Het-1A) cell lines. By means of fluorescence microscopy ALA-induced PpIX was initially localized in the mitochondria, whereas exogenous PpIX was mainly distributed in cell membranes. At a similar amount of cellular PpIX PDT with ALA was significantly more efficient than photodynamic treatment with exogenous PpIX at killing all the 3 cell lines. Measurements of mitochondrial membrane potential and intracellular ATP content, and electron microscopy showed that the mitochondria were initially targeted by ALA-PDT, consistent with intracellular localization pattern of ALA-induced endogenous PpIX. This indicates that subcellular localization pattern of PpIX is an important determinant for its PDT efficiency in the 3 cell lines. Our finding suggests that future new photosensitizers with mitochondrially localizing properties may be designed for effective PDT.  相似文献   

16.
The phototoxicity of two new porphyrin photosensitizers, diarginine diprotoporphyrinate (PP(Arg)2) and N,N-diphenylalanyl protoporphyrin (PP(Phe)2), and the synergistic effect of 5-methoxyposralen (5-MOP) have been studied in comparison with that of protoporphyrin IX (PPIX). Under ultraviolet-A (UV-A) irradiation (lambda=365 nm), the phototoxicity of the porphyrins toward cultured human fibroblasts and keratinocytes decreases in the order: PPIX > PP(Arg)2 > PP(Phe)2. A synergistic effect of 5-MOP on the phototoxicity of PPIX, PP(Arg)2 and PP(Phe)2 has been observed. The combination of PPIX, PP(Arg)2 and PP(Phe)2 with 0.1-0.5 microM 5-MOP significantly potentiates the phototoxicity of the three porphyrins. The most effective potentiation was observed with the water-soluble PP(Arg)2 and 5-MOP concentrations lower than 0.75 microM. Above this 5-MOP concentration this potentiation is abolished. The intracellular concentration of PPIX and PP(Phe)2 is independent of the presence of 5-MOP. On the other hand, the intracellular content of PP(Arg)2 is decreased in a concentration-dependent manner by the psoralen. Illumination with red light, not absorbed by 5-MOP, leads to a weak potentiation of the PP(Arg)2 phototoxic effect in the presence of 5-MOP, suggesting that dark interaction of 5-MOP with cell membranes aggravated by porphyrin photosensitization is involved in the observed phenomena. The results are tentatively explained by differences in hydrophobicity and molecular structures of the examined photosensitizers. PPIX, which is barely soluble in water, has a significantly higher affinity for cell membranes and simultaneously exerts a stronger phototoxic effect than PP(Arg)2 whose solubility in water is high. On the other hand, the weak phototoxicity of PP(Phe)2 could be explained by the steric hindrance brought by the phenylalanyl substituents on the pyrrole ring. The loss in the PP(Arg)2 cell content probably explains the inhibition of the synergistic effect of 5-MOP on the PP(Arg)2 phototoxicity at high 5-MOP concentration. This study suggests that PP(Arg)2 in combination with 5-MOP might reveal a strong phototoxic effect when applied to skin cancer treatment.  相似文献   

17.
Photodynamic therapy (PDT) is emerging as a potential therapeutic modality in the clinical management of cutaneous leishmaniasis (CL). In order to establish a rationale for effective PDT of CL, we investigated the impact of the molecular charge and structure of photosensitizers on the parasitic phototoxic response. Two photosensitizers from the benzophenoxazine family that bear an overall cationic charge and two anionic porphyrinoid molecules were evaluated. The photodynamic activity of the photosensitizers decreases in the following order: EtNBSe > EtNBS > BpD > PpIX. The studies suggest that compared to hydrophobic anionic photosensitizers, the hydrophilic cationic benzophenoxazine analogs provide high effectiveness of PDT possibly due to (1) their strong attraction to the negatively charged parasitic membrane, (2) their hydrophilicity, (3) their high singlet oxygen quantum yield, and (4) their efficacy in targeting intracellular organelles.  相似文献   

18.
An implicit dosimetric model has been proposed in which biological damage caused by photodynamic therapy (PDT) is monitored through the decrease in sensitizer fluorescence during treatment. To investigate this, in vitro experiments were performed in which DP16 cells were incubated in meta-tetra(hydroxyphenyl)chlorin (mTHPC) and then irradiated with 514 nm light. Photosensitizer concentration, fluence rate and oxygenation were independently controlled and monitored during the treatment. Fluorescence of mTHPC was continuously monitored via a charge-coupled device-coupled spectrometer during treatment and, at selected fluence levels, cell viability was determined using a trypan blue exclusion assay. The relationship of cell viability to normalized fluorescence was obtained for the different treatment conditions. The relationship was independent of cell medium oxygenation, treatment fluence rate and sensitizer incubation concentration except at a high mTHPC concentration (4 microg/mL). This relationship suggests that fluorescence bleaching may be used to predict mTHPC PDT damage in vitro.  相似文献   

19.
5-Aminolevulinic acid and its esterified analogues have been under much investigation to enhance the endogenous production of protoporphyrin IX (PpIX) in tumor cells. However, in this work, we studied the in vitro and in vivo efficacy of exogenously administered PpIX and its esterified analogue, PpIX dimethyl ester (PME), in poorly differentiated human nasopharyngeal carcinoma (NPC/CNE-2) as a photodynamic diagnostic (PDD) agent. NPC/CNE-2 at its earliest time, 1 h after incubation with PME in in vitro studies, has exhibited 64% (P <0.01) higher tumor to normal cell (T/N) fluorescence ratio than with PpIX. In an in vivo mouse xenograft model, comparable photosensitizer concentration in tumor after intravenous administration was observed at 1-3 h time points, but at 9 h, PME had 31% (P=0.05) greater concentration in tumor compared with PpIX. In addition, by constituting PME and PpIX in different topical gel composites, of which, PME gel composition of 8:2 Plasdone and Gantrez resulted in the highest T/N ratio at 6 h after application (34%; P <0.05) in comparison with other gel composites. Evaluation of PME and PpIX constituted in the delivery vehicles investigated showed comparable selectivity for tumor at 1-3 h, thus neither photosensitizer is more efficient than the other for PDD at the early time points; however, beyond 6 h, PME had higher selectivity for tumor compared with PpIX. Thus, further investigation is warranted to improve the drug delivery vehicle for greater tumor selectivity at a shorter incubation time.  相似文献   

20.
The skin of nude mice was exposed to erythemogenic doses of UV radiation, which resulted in erythema with edema. An ointment containing 5-aminolevulinic acid (ALA) was topically applied on mouse and human skin. Differences in the kinetics of protoporphyrin accumulation were investigated in normal and UV-exposed skin. At 24 and 48 h after UV exposure, skin produced significantly less protoporphyrin IX (PpIX) than skin unexposed to UV. Human skin on body sites frequently exposed to solar radiation (the lower arm) also produced less PpIX than skin exposed more rarely to the sun (the upper arm). It is concluded that UV radiation introduces persisting changes in the skin, relevant to its capability of producing PpIX from ALA. The observed differences in ALA-induced PpIX fluorescence may be the result of altered penetration of ALA through the stratum corneum or altered metabolizing ability of normal and UV-exposed skin (or both).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号