首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new heteroleptic ruthenium sensitizers [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(L)(NCS)(2)] (L = 5,5'-bis(4-octylthiophen-2-yl)-2,2'-bipyridine (1), 5,5'-bis(N,N-diphenyl-4-aminophenyl)-2,2'-bipyridine (2), 5,5'-bis(5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (3) and 5,5'-bis(4-octyl-5-(N,N-diphenyl-4-aminophenyl)-thiophen-2-yl)-2,2'-bipyridine (4)) were synthesized, characterized by physicochemical and computational methods, and utilized as photosensitizers in nanocrystalline dye-sensitized solar cells (DSSCs). The λ(max) of the metal-to-ligand charge transfer (MLCT) absorption of these four ruthenium dyes (527 nm for 1, 535 nm for 2, 585 nm for 3 and 553 nm for 4) can be tuned by various structural modifications of the ancillary ligand and it was shown that increasing the conjugation length of such ligand reduces the energy as well as the molar absorption coefficient of the MLCT band. The maximum incident photon to current conversion efficiency (IPCE) of 41.4% at 550 nm, 38.6% at 480 nm, 39.4% at 470 nm and 31.1% at 480 nm for 1-, 2-, 3- and 4-sensitized solar cells were obtained. Respectable power conversion efficiencies of 3.00%, 2.51%, 2.00% and 2.03% were realized, respectively, when the sensitizers 1, 2, 3 and 4 were used in DSSCs under the standard air mass (AM) 1.5 sunlight illumination (versus 5.9% for standard N719).  相似文献   

2.
A new class of cyclometalated ruthenium complexes, Ru(C^N^N')(N^N'^N')·Cl where N^N'^N' = 4,4',4'-tricarboxy-2,2':6',2'-terpyridine and C^N^N' = substituted 6-phenyl-2,2'-bipyridine, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the effect of different substituents (R = COOH, thiophen-2-yl, F and OCH(3)) on the ancillary C^N^N' ligand on the photophysical properties and performance of the six different cyclometalated ruthenium complexes in DSSCs. Using an ionic liquid based electrolyte, efficiencies up to η = 3.06% have been attained under 1 sun irradiation. Moreover, the T66 based DSSC exhibited a good stability under 1000 W m(2) light soaking at 60 °C for 24 days, retaining 92.8% of its initial efficiency.  相似文献   

3.
We report the synthesis of free 1,6,7,12-tetraazaperylene (tape). Tape was obtained from 1,1'-bis-2,7-naphthyridine by potassium promoted cyclization followed by oxidation with air. Mono- and dinuclear ruthenium(II) 1,6,7,12-tetraazaperylene complexes of the general formulas [Ru(L-L)(2)(tape)](PF(6))(2), [1](PF(6))(2)-[5](PF(6))(2), and [{Ru(L-L)(2)}(2)(μ-tape)](PF(6))(4), [6](PF(6))(4)-[10](PF(6))(4), with{L-L = phen, bpy, dmbpy (4,4'-dimethyl-2,2'-bipyridine), dtbbpy (4,4'-ditertbutyl-2,2'-bipyridine) and tmbpy (4,4'5,5'-tetramethyl-2,2'-bipyridine)}, respectively, were synthesized. The X-ray structures of tape·2CHCl(3) and the mononuclear complexes [Ru(bpy)(2)(tape)](PF(6))(2)·0.5CH(3)CN·0.5toluene, [Ru(dmbpy)(2)(tape)](PF(6))(2)·2toluene and [Ru(dtbbpy)(2)(tape)](PF(6))(2)·3acetone·0.5H(2)O were solved. The UV-vis absorption spectra and the electrochemical behavior of the ruthenium(ii) tape complexes were explored and compared with the data of the analogous dibenzoeilatin (dbneil), 2,2'-bipyrimidine (bpym) and tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazin (tpphz) species.  相似文献   

4.
Ionic liquids containing the nitrile and vinyl functional groups attached to imidazolium cations combined with various anions, e.g., iodide, bis[(trifluoromethyl)sulfonyl]imide ([TFSI]-), or dicyanamide ([N(CN)2]-), have been prepared and characterized. These ionic liquids have been successfully used as electrolytes for dye-sensitized solar cells based on nanocrystalline TiO2 with the amphiphilic ruthenium sensitizer [ruthenium (4,4'-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2'-bipyridine)][NCS]2 (coded K-19). The iodide salt was used in 3-methoxypropionitrile-based electrolytes, and the performances of both types of devices were evaluated on the basis of their photocurrent density-voltage characteristics and dark current measurements, demonstrating that the functional groups do not exert a detrimental effect on the performance. The solid-state structure of the nitrile-functionalized salt [C1C3CN(im)]I has also been established by single-crystal X-ray diffraction, revealing extensive hydrogen bonding between the cation protons and the iodide.  相似文献   

5.
Amphiphilic ligands 4,4'-bis(1-adamantyl-aminocarbonyl)-2,2'-bipyridine (L(1)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)ethyl]aminocarbonyl]]-2,2'-bipyridine (L(2)), 4,4'-bis[5-[N-[2-(3beta-cholest-5-en-3-ylcarbamate-N-yl)propyl]aminocarbonyl]]-2,2'-bipyridine (L(3)), and 4,4'-bis(dodecan-12-ol)-2,2'-bipyridine (L(4)) and their heteroleptic ruthenium(II) complexes of the type [Ru(II)LL(1)(NCS)(2)] (5), [Ru(II)LL(2)(NCS)(2)] (6), [Ru(II)LL(3)(NCS)(2)] (7), and [Ru(II)LL(4)(NCS)(2)] (8) (where L = 4,4'-bis(carboxylic acid)-2,2'-bipyridine) have been synthesized starting from dichloro(p-cymene)ruthenium(II) dimer. All the ligands and the complexes were characterized by analytical, spectroscopic, and electrochemical techniques. The performance of these complexes as charge-transfer photosensitizers in nanocrystalline TiO(2)-based solar cells was studied. When complexes 5-8 anchored onto a 12 + 4 microm thick nanocrystalline TiO(2) films, very efficient sensitization was achieved (85 +/- 5% incident photon-to-current efficiencies in the visible region, using an electrolyte consisting of 0.6 M butylmethylimidazolium iodide, 0.05 M I(2), 0.1 M LiI, and 0.5 M tert-butyl pyridine in 1:1 acetonitrile + valeronitrile). Under standard AM 1.5 sunlight, the complex 8 yielded a short-circuit photocurrent density of 17 +/- 0.5 mA/cm(2), the open-circuit voltage was 720 +/- 50 mV, and the fill factor was 0.72 +/- 0.05, corresponding to an overall conversion efficiency of 8.8 +/- 0.5%.  相似文献   

6.
A new ruthenium(II) complex, tetrabutylammonium [ruthenium (4-carboxylic acid-4'-carboxylate-2,2'-bipyridine)(4,4'-di(2-(3,6-dimethoxyphenyl)ethenyl)-2,2'-bipyridine)(NCS)(2)] (N945H), was synthesized and characterized by analytical, spectroscopic, and electrochemical techniques. The absorption spectrum of the N945H sensitizer is dominated by metal-to-ligand charge-transfer (MLCT) transitions in the visible region, with the lowest allowed MLCT bands appearing at 25 380 and 18 180 cm(-1). The molar extinction coefficients of these bands are 34 500 and 18 900 M(-1) cm(-1), respectively, and are significantly higher when compared to than those of the standard sensitizer cis-dithiocyanatobis(4,4'-dicarboxylic acid-2,2'-bipyridine)ruthenium(II). An INDO/S and density functional theory study of the electronic and optical properties of N945H and of N945 adsorbed on TiO(2) was performed. The calculations point out that the top three frontier-filled orbitals have essentially ruthenium 4d (t(2g) in the octahedral group) character with sizable contribution coming from the NCS ligand orbitals. Most critically the calculations reveal that, in the TiO(2)-bound N945 sensitizer, excitation directs charge into the carboxylbipyridine ligand bound to the TiO(2) surface. The photovoltaic data of the N945 sensitizer using an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I(2), 0.10 M guanidinium thiocyanate, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio = 85:15) exhibited a short-circuit photocurrent density of 16.50 +/- 0.2 mA cm(-2), an open-circuit voltage of 790 +/- 30 mV, and a fill factor of 0.72 +/- 0.03, corresponding to an overall conversion efficiency of 9.6% under standard AM (air mass) 1.5 sunlight, and demonstrated a stable performance under light and heat soaking at 80 degrees C.  相似文献   

7.
Neutral ruthenium(II) complexes [RuLL'(CN)2] (L, L' = bpy, dmb, dbb; bpy = 2,2'-bipyridine, dmb = 4,4'-dimethyl-2,2'-bipyridine, dbb = 4,4'-tert-butyl-2,2'-bipyridine) were prepared, and the luminescence characteristics of the complexes in the solid state were measured. The luminescence was tuned by crystal waters included in the crystals; for example, [Ru(dbb)2(CN)2] x 2H2O, [Ru(dbb)2(CN)2] x H2O, and [Ru(dbb)2(CN)2] emit luminescence at 640, 685, and 740 nm, respectively.  相似文献   

8.
A hydrophobic and 2-thiophen-2-yl-vinyl-conjugated ruthenium complex, cis-Ru(dhtbpy)(dcbpy)(NCS)2 [dhtbpy = 4,4'-di(hexylthienylvinyl)-2,2'-bipyridyl; dcbpy = 4,4'-dicarboxy-2,2'-bipyridyl], was newly designed, synthesized and applied successfully to sensitization of nanocrystalline TiO2-based solar cells, giving a conversion efficiency of 9.5% under irradiation with AM 1.5 solar light.  相似文献   

9.
Ultrafast infrared spectroscopy was utilized to investigate the electron-transfer dynamics from Ru(dcbpy)(2)(X)(2) complexes (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine; X(2) = SCN(-), 2CN(-), and dcbpy; referenced as RuN3, Ru505, and Ru470, respectively) to nanocrystalline SnO(2) films. For both films exposed to air (dry) and submerged in a pH 2 buffer solution, all traces show biphasic dynamics with a small ultrafast component (less than 10%) and nonexponential slow component, indicating that most injection occurs from thermalized excited state of the dye. In the dry film, the injection rate becomes slower, comparing RuN3, Ru505, and Ru470, correlating with decreasing excited-state oxidation potentials in these dyes. However, the variation of injection rate with dye potential is less noticeable at pH 2. The possible reason for the different injection dynamics in these dyes and under different environments are discussed. These injection dynamics are also compared with those on TiO(2) and ZnO.  相似文献   

10.
A divergence from the conventional approach to chromophore design has led to the establishment of many exciting new benchmarks for the dye-sensitized solar cell (DSSC), including the first documented power conversion efficiency in excess of 12% at 1 sun illumination [Yella et al., Science 2011, 334, 629]. Paramount to these advances is the deviation from polypyridyl ruthenium dyes bearing NCS(-) ligands, such as [Ru(dcbpy)(2)(NCS)(2)] (N3; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine). While metal-free and porphyrin dyes have demonstrated much promise, the discovery that the NCS(-) ligands of N3 can be replaced by anionic, chelating cyclometalating ligands without compromising device efficiencies has ushered in a new era of ruthenium dye development. A particularly appealing feature of this class of dyestuff is that they offer acute control of the frontier molecular orbitals to enable the precise attenuation of both the ground and excited state redox potentials through judicious chemical modification of the aryl ring. This Perspective summarizes very recent developments in the field, and demonstrates how the new and rapidly expanding class of Ru-based sensitizers provides a conduit for enhancing the performance (and potentially the stability) of the DSSC.  相似文献   

11.
A novel heteroleptic ruthenium complex carrying a heteroaromatic-4,4'-pi-conjugated 2,2'-bipyridine [Ru(II)LL'(NCS)(2)] (L = 4,4'-bis[(E)-2-(3,4-ethylenedioxythien-2-yl)vinyl]-2,2'-bipyridine, L' = 4,4'-(dicarboxylic acid)-2,2'-bipyridine) was synthesized and used in dye-sensitized solar cells, yielding photovoltaic efficiencies of 9.1% under standard global AM 1.5 sunlight.  相似文献   

12.
We report new divalent osmium complexes that feature strong red metal-to-ligand-charge-transfer (MLCT) phosphorescence and electrophosphorescence. The general formula of the complexes is Os(II)(N-N)(2)L-L, where N-N is either a bipyridine or a phenanthroline and L-L is either a phosphine or an arsine. New polypyridyl ligands synthesized are 4,4'-di(biphenyl)-2,2'-bipyridine (15) and 4,4'-di(diphenyl ether)-2,2'-bipyridine (16), and the 1,10-phenanthroline derivatives synthesized are 4,7-bis(p-methoxyphenyl)-1,10-phenanthroline (17), 4,7-bis(p-bromophenyl)-1,10-phenanthroline (18), 4,7-bis(4'-phenoxybiphen-4-yl)-1,10-phenanthroline (19), and 4,7-bis(4-naphth-2-ylphenyl)-1,10-phenanthroline (20). 4,4'-Diphenyl-2,2'-bipyridine (21) and 4,7-diphenyl-1,10-phenanthroline (22) were also used in these studies. Strong pi-acid ligands used were 1,2-bis(diphenylarseno)ethane (23), cis-1,2-bis(diphenylphosphino)ethylene (24), and cis-1,2-vinylenebis(diphenylarsine) (25). Ligand 25 is used for the first time in these types of luminescent osmium complexes. These compounds feature strong MLCT absorption bands in the visible region and strong red phosphorescent emission ranging from 611 to 651 nm, with quantum efficiency up to 45% in ethanol solution at room temperature. Red organic light-emitting diodes (OLEDs) were successfully fabricated by doping the Os(II) complexes into blend of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD). Brightness over 1400 cd/m(2) for a double-layer device has been reached, with a turn-on voltage of 8 V. The maximum external quantum efficiency was 0.64%. Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (x, y) of the red electrophosphorescence from the complexes are (0.65, 0.34), which indicates pure red emission.  相似文献   

13.
We have developed and optimized a well-controlled and refined methodology for the synthesis of substituted π-conjugated 4,4'-styryl-2,2'-bipyridine ligands and also adapted the tris(heteroleptic) synthetic approach developed by Mann and co-workers to produce two new representative Ru(II)-based complexes bearing the metal oxide surface-anchoring precursor 4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine. The two targeted Ru(II) complexes, (4,4'-dimethyl-2,2'-bipyridine)(4,4'-di-tert-butyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dtbbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (1) and (4,4'-dimethyl-2,2'-bipyridine)(4,4'-dinonyl-2,2'-bipyridine)(4,4'-bis[E-(p-methylcarboxy-styryl)]-2,2'-bipyridine) ruthenium(II) hexafluorophosphate, [Ru(dmbpy)(dnbpy)(p-COOMe-styryl-bpy)](PF(6))(2) (2) were obtained as analytically pure compounds in high overall yields (>50% after 5 steps) and were isolated without significant purification effort. In these tris(heteroleptic) molecules, NMR-based structural characterization became nontrivial as the coordinated ligand sets each sense profoundly distinct magnetic environments greatly complicating traditional 1D spectra. However, rational two-dimensional approaches based on both homo- and heteronuclear couplings were readily applied to these structures producing quite definitive analytical characterization and the associated methodology is described in detail. Preliminary photoluminescence and photochemical characterization of 1 and 2 strongly suggests that both molecules are energetically and kinetically suitable to serve as sensitizers in energy-relevant applications.  相似文献   

14.
Room temperature phosphorescence has been observed in a synthetically facile Pt(II) complex, Pt(dbbpy)(CtriplebondC-pyrene)(2) (dbbpy = 4,4'-di(tert-butyl)-2,2'-bipyridine; CtriplebondC-pyrene = 1-ethynylpyrene), in fluid solution. The static and time-resolved absorption and luminescence data are consistent with phosphorescence emerging from the appended CtriplebondC-pyrenyl units following excitation into the low energy dpi Pt --> pi* dbbpy metal-to-ligand charge transfer absorption bands.  相似文献   

15.
We report a combined experimental and computational study of several ruthenium(II) sensitizers originated from the [Ru(dcbpyH(2))(2)(NCS)(2)], N3, and [Ru(dcbpyH(2))(tdbpy)(NCS)(2)], N621, (dcbpyH(2) = 4,4'-dicarboxy-2,2'-bipyridine, tdbpy = 4,4'-tridecyl-2,2'-bipyridine) complexes. A purification procedure was developed to obtain pure N-bonded isomers of both types of sensitizers. The photovoltaic data of the purified N3 and N621 sensitizers adsorbed on TiO(2) films in their monoprotonated and diprotonated state, exhibited remarkable power conversion efficiency at 1 sun, 11.18 and 9.57%, respectively. An extensive Density Functional Theory (DFT)-Time Dependent DFT study of these sensitizers in solution was performed, investigating the effect of protonation of the terminal carboxylic groups and of the counterions on the electronic structure and optical properties of the dyes. The calculated absorption spectra are in good agreement with the experiment, thus allowing a detailed assignment of the UV-vis spectral features of the two types of dyes. The computed alignments of the molecular orbitals of the different complexes with the band edges of a model TiO(2) nanoparticle provide additional insights into the electronic factors governing the efficiency of dye-sensitized solar cell devices.  相似文献   

16.
A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.  相似文献   

17.
A phenomenally high molar extinction coefficient heteroleptic ruthenium(II) complex [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-(4-{4-methyl-2,5-bis[3-methylbutoxy]styryl}-2,5-bis[3-methylbutoxy]-2,2'-bipyridine)(NCS) 2] ( DCSC13) was synthesized by incorporating donor-acceptor ligands. The absorption spectrum of the DCSC13 sensitizer is dominated by metal-to-ligand charge-transfer transitions (MLCT) in the visible region, with absorption maxima appearing at 442 and 554 nm. The lowest MLCT absorption bands are red-shifted, and the molar extinction coefficients of these bands are significantly higher at 72,100 and 30,600 M(-1) cm(-1), respectively, when compared to those of the analogous [Ru(4,4'-carboxylic acid-2,2'-bipyridine)(4,4'-dimethyl-2,2'-bipyridine)(NCS)2] (N820) sensitizer. The DCSC13 complex, when anchored on nanocrystalline TiO 2 films, exhibited increased short-circuit photocurrent and consequent power-conversion efficiency when compared with the N820 sensitizer.  相似文献   

18.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

19.
When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.  相似文献   

20.
Nanocrystalline (anatase) titanium dioxide films have been sensitized to visible light with K(4)[Fe(CN)(6)] and Na(2)[Fe(LL)(CN)(4)], where LL = bpy (2,2'-bipyridine), dmb (4,4'-dimethyl-2,2'-bipyridine), or dpb (4,4'-diphenyl-2,2'-bipyridine). Coordination of Fe(CN)(6)(4-) to the TiO(2) surface results in the appearance of a broad absorption band (fwhm approximately 8200 cm(-1)) centered at 23800 +/- 400 cm(-1) assigned to an Fe(II)-->TiO(2) metal-to-particle charge-transfer (MPCT) band. The absorption spectra of Fe(LL)(CN)(4)(2-) compounds anchored to TiO(2) are well modeled by a sum of metal-to-ligand charge-transfer (MLCT) bands and a MPCT band. Pulsed light excitation (417 or 532 nm, approximately 8 ns fwhm, approximately 2-15 mJ/pulse) results in the immediate appearance of absorption difference spectra assigned to an interfacial charge separated state [TiO(2)(e(-)), Fe(III)], k(inj) > 10(8) s(-1). Charge recombination is well described by a second-order equal concentration kinetic model and requires milliseconds for completion. A model is proposed wherein sensitization of Fe(LL)(CN)(4)(2-)/TiO(2) occurs by MPCT and MLCT pathways, the quantum yield for the latter being dependent on environment. The solvatochromism of the materials allows the reorganization energies associated with charge transfer to be quantified. The photocurrent efficiencies of the sensitized materials are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号