首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
用全矢量的三维有限差分时域(finite-difference time-domain,简称FDTD)方法,研究了正方形单元结构金属光子晶体平板的增强传输效应以及局域性表面等离子体共振现象.这种增强效应来自于两个不同的等离子体共振机制:由长方形空气孔形成的局域波导共振以及由周期性结构引起的光子晶体共振效应.对于由长方形空气孔形成的局域波导共振模式,其等离子体波全部局域在整个长方形空气孔区域中.而由周期性引起的共振模式,其频率随着金属平板表面周期性的变化而变化,相应的等离子体波分布在长方形空气孔区域的两端.产生的表面等离子体都局域在长方形空气孔区域中,电场强度得到了显著的增强. 关键词: 光子晶体 金属平板 超强透射 表面等离子体  相似文献   

2.
The transmission characteristics of a metallic film with subwavelength ellipsoid nanohole arrays are investigated by using the three-dimensional finite-difference time-domain (3D-FDTD) method. The extraordinary transmission is attributed to the collaboration of localized waveguide resonance and surface plasmon resonance. The influences of the lattice constant and the hole shape on the transmission are studied. By analyzing the picture of electric field and electromagnetic energy distribution, we show the mechanisms of the two different resonances: Localized waveguide resonance mode can be confined inside the ellipsoid holes region, while electric field and electromagnetic energy are localized separately at the two ends of ellipsoid holes for the surface plasma resonance mode. Supported by the National Natural Science Foundation of China (Grant No. 60708014), the Distinguished Youth Foundation of Hunan Province (Grant No. 03JJY1008), the Science Foundation for Post-doctorate of China (Grant No. 2004035083), and the Natural Science Foundation of Hunan Province (Grant No. 06JJ20034)  相似文献   

3.
We report FDTD simulation results demonstrating that the optical phase change of surface plasmon polariton-assisted transmission through nanohole arrays in a metal film undergoes a sharp change under resonant conditions. The phenomenon can be explained by various resonant modes between the nanoholes. We further explore the possibility of using this effect for phase-sensitive surface plasmon resonance biosensing applications.  相似文献   

4.
Tetz KA  Pang L  Fainman Y 《Optics letters》2006,31(10):1528-1530
A high spectral resolution, 2D nanohole-array-based surface plasmon resonance sensor that operates at normal or near normal incidence--facilitating high spatial resolution imaging--is presented. The angular and spectral transmittance of the structure is modified from a Fano type to a pure Lorentzian line shape with a parallel and orthogonal polarizer-analyzer pair. This change leads to a linewidth narrowing that maximizes the sensor resolution, which we show to be of O(10(-5)) refractive index units (RIU). We estimate the potential of this system of O(10(-6)) RIU under optimal conditions.  相似文献   

5.
Collective surface plasmon resonance (SPR) excitations in an ordered array of silver nanoshells have been theoretically studied using generalized Mie theory. Near- and far-field radiative coupling between the nanoshells in the array result in a non-monotonic shift of the collective SPR band. When the distance between the shells in the array approaches that of the collective SPR wavelength, we observe narrowing of the collective SPR band due to constructive interference between the scattered electric field from the particles in the array. Further increase of the distance between the nanoshells in the array leads to destructive interference and broadening of the collective SPR band.  相似文献   

6.
We propose a plasmonic structure to obtain polarization-insensitive localized surface plasmon resonance (LSPR) sensor, which consists of cross-slit metallic periodic arrays embedded in the background material. Numerical simulation illustrates that the mechanism of the LSPR sensor is based on the shift of the Fabry–Perot cavity mode resonance peak in the spectrum as the change of the dielectric material properties for the near fields. And one of the transmission dips of the structure is very sensitive to the background materials; the structure could gain the sensitivity (nm/RIU) more than 500 nm/RIU. Meanwhile, the structure holds great potential to achieve high-performance sensors in practical application due to polarization-insensitive virtue.  相似文献   

7.
Highly conducting metal-film subwavelength hole arrays, lithographically fabricated on high-resistivity silicon wafers in optical contact with thick silicon plates, have been characterized by terahertz time-domain spectroscopy with subpicosecond resolution and over a frequency range from 0.5 to 3 THz with 5 GHz resolution. A well-defined ringing structure extending to more than 250 psec is observed on the trailing edge of the transmitted THz pulse. In the frequency domain this ringing structure corresponds to a new type of extremely sharp resonant line structure between the fundamental surface plasmon modes of the hole array. A simple theoretical model is presented and shows good agreement with the experimental data.  相似文献   

8.
深入浅出地分析了金属表面等离体子振荡形成的机理,利用拉普拉斯方程得到了半无限金属、金属薄膜和球状纳米金属颗粒的表面等离体子振荡频率。  相似文献   

9.
Bismuth nanocap arrays have been prepared by vacuum depositing Bi films onto the surfaces of self-assembled monolayer arrays of SiO2 nanoparticles. The surface morphologies, structures, and optical properties of the obtained samples have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and ultraviolet–visible–near infrared (UV–vis–NIR) spectrophotometer. TEM and AFM images indicated that the SiO2/Bi composite nanoparticles were incompletely encapsulated and their surfaces were relatively rough. UV–vis–NIR absorption spectra showed that Bi nanocap arrays had strong and tunable surface plasmon resonance peaks in the visible and near infrared regions, which were dependent dramatically on the relative ratio of the SiO2 core diameter to the Bi cap thickness.  相似文献   

10.
We investigated whether blood proteins can be analyzed on protein arrays with a spectral surface plasmon resonance (SPR) biosensor. We modified gold arrays with a mixture of mercaptoundecanoic acid and mercaptohexanol, and immobilized blood proteins-hemoglobin (Hb) and haptoglobin (Hp), or their antibodies. We analyzed interactions of Hb with Hp on protein arrays by measuring the shift of resonance wavelength, and a significant interaction was observed when Hp was used as a ligand. Then, we fabricated antibody arrays with antibodies against Hb and Hp, and analyzed binding of blood proteins onto the arrays. Anti-Hb showed a specific interaction with Hb on the antibody arrays. Interaction of anti-Hp with Hp was specific when Hp was used as capture molecules. The shift of resonance wavelength caused by the interaction of blood proteins was explained by changes of refractive index on the gold surfaces of protein arrays. The present work suggests that spectral SPR biosensors can be used as a useful tool for the analysis of blood proteins on protein arrays.  相似文献   

11.
A hologram has been made using a surface plasmon resonance wave as the reference beam. The surface wave was stimulated on a 1200-line/mm aluminum reflection grating that was coated with a thin layer of high resolution photographic emulsion. Experimental results are presented.  相似文献   

12.
We report polarization tomography experiments on metallic nanohole arrays with square and hexagonal symmetry. As a main result we find that a fully polarized input beam is partly depolarized after transmission through a nanohole array. This loss of polarization coherence is found to be anisotropic; i.e., it depends on the polarization state of the input beam. The depolarization is ascribed to a combination of two factors: (i) the nonlocal response of the array as a result of surface-plasmon propagation and (ii) the non-plane-wave nature of a practical input beam.  相似文献   

13.
The surface photoelectric effect and the surface plasmon resonances appear when a p/transverse magnetic polarized laser hits a gas-solid interface. We model this effect in the long wave length (LWL) domain (λvac > 10 nm,  < 124 eV) by combining the Ampère-Maxwell equation, written in classical approximation, with the material equation for the susceptibility. The resulting model, called the vector potential from the electron density (VPED), calculates the susceptibility as a product of the bulk susceptibility and the electron density of the actual system. The bulk susceptibility is a sum of the bound electron scalar susceptibility taken from the experiment and of the conduction electron non-local isotropic susceptibility tensor in a jellium metal (Lindhard, 1954 [1]). The electron density is the square of the wave function solution of the Schrödinger equation. The analysis of observables, the reflectance R and the photoelectron yield Y as well as the induced charge density permits to identify and characterize the multipole surface plasmon resonance of Al(111) appearing at ωm ∼ 0.8ωp or 11-12 eV.  相似文献   

14.
The optical reflectance of metal films changes dramatically as the film thickness becomes thinner than the electron mean free path. We have developed a transfermatrix formalism for deducing the dispersion relations of the electromagnetic waves in infinite and semi-infinite metal-dielectric superlattices by taking into account the presence of the size effect and coupled plasmon waves. This work shows that the resonance frequency occurring at the reflecting dip increases while the bandwidth decreases as the thickness of the dielectric films increases. Reducing the values of p and q shifts the resonance frequency upward and yields multiple numbers of minimum reflectivity.  相似文献   

15.
Aluminium nanohole arrays with fixed diameter were fabricated by focused ion beam and the periodicities were turned.Aluminium nanohole arrays enhanced resonance Raman scattering spectra in the near ultraviolet region were studied experimentally and theoretically,which revealed that the SERRS enhancement factor was as high as 6 orders.  相似文献   

16.
Zhang CY  Yao JW  Liu HY  Dai QF  Wu LJ  Lan S  Trofimov VA  Lysak TM 《Optics letters》2012,37(6):1106-1108
We report on the formation of one- and two-dimensional (1D and 2D) nanohole arrays on the surface of a silicon wafer by scanning with a femtosecond laser with appropriate power and speed. The underlying physical mechanism is revealed by numerical simulation based on the finite-difference time-domain technique. It is found that the length and depth of the initially formed gratings (or ripples) plays a crucial role in the generation of 1D or 2D nanohole arrays. The silicon surface decorated with such nanohole arrays can exhibit vivid structural colors through efficiently diffracting white light.  相似文献   

17.
18.
表面等离子体共振技术的一些新应用   总被引:3,自引:0,他引:3  
介绍了表面等离子体共振技术在表面等离子体共振传感器、扫描近场光学显微技术、薄膜光学和膜厚测量、全息成像技术、Q开关、精密角度测量等领域的新应用.  相似文献   

19.
The absorption of light by surface plasmons has been studied using the method of attenuated total reflection. The reflectance from a quartz-Ag interface has been measured as a function of angle and surface structure for the wavelength region from 3600 to 6000 . It is shown that the reflectance minimum for a smooth Ag film is changed in both angular position and spectral half-width by roughening the Ag surface with CaF2 underlayers. Dispersion curves are presented which show that the wave vector of a surface plasmon propagating on an irregular surface is greater than that of an equally energetic surface plasmon propagating on a planar surface.  相似文献   

20.
The features of surface plasmon resonance in gold nanofilms deposited on the surface of a total-internal-reflection prism have been investigated theoretically, using the Fresnel equation, and experimentally, with application of the polarization modulation technique. The angular characteristics of the polarization difference of the reflection coefficients for s-and p-polarized light, Δρ = R s 2 ? R p 2 , were measured in the wave-length range λ = 0.4–2.0 μm. It is shown that the characteristics of Δρ, in contrast to the results of standard measurements by the surface plasmon resonance method, have a resonance peak. Due to this, the characteristics of the polarization difference contain nonresonant components whose magnitudes are determined by the internal reflection coefficients for the metal and insulator; these parameters depend on the film thickness. The calculated and experimental data coincide when the model assumes exponential dependence of the refractive indices and extinction coefficients on the thickness of the metal film. It is established that the characteristic parameter of the exponential is a metal film thickness of 11.0 ± 0.5 nm, at which the film optical parameters correspond to the bulk characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号