首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈智慧  肖思  何军  顾兵 《发光学报》2015,36(8):969-975
采用Z-扫描和泵浦-探测技术,在光通讯波段对砷化镓(GaAs)单晶进行了非线性动力学以及非线性光学的实验研究.飞秒泵浦-探测实验结果表明,三阶非线性光学效应源于砷化镓单晶对飞秒激光的瞬态双光子吸收,而五阶非线性光学效应源于砷化镓单晶双光子吸收诱导的自由载流子吸收效应.通过Z扫描实验,得到了关于GaAs单晶所有的非线性光学参数,包括双光子吸收系数、三阶非线性折射系数、双光子吸收诱导的自由载流子吸收截面以及双光子吸收诱导的自由载流子折射截面.结果表明,砷化镓单晶在制造光限幅器件和光电探测器方面具有良好的发展前景.  相似文献   

2.
采用Z扫描和泵浦-探测技术研究了GaN薄膜在370 nm时的非线性光学效应和非线性光动力学过程。首先,基于GaN薄膜的透射光谱,结合线性光学理论分析得到了其在370 nm的线性折射率n0、线性吸收系数α0、光学带隙Eg等线性光学性质。采用飞秒激光Z扫描技术,得到了不同光强激发下的Z扫描实验响应结果,结合非线性光学理论提取出GaN薄膜可变的光学非线性吸收效应。在激发光子能量接近GaN带隙情况下,低光强时材料表现为饱和吸收而高光强时为反饱和吸收,这是因为低光强下单光子吸收占主导而高光强下以单光子感应自由载流子吸收为主。闭孔Z扫描测量得到了GaN薄膜的三阶非线性折射系数为n2=-(1.0±0.1)×10-3 cm2·GW-1,它几乎比传统非线性介质的高出一个数量级。为了探究上述非线性过程的动力学弛豫时间以及进一步探究GaN薄膜非线性光动力学过程的深层物理机制,采用了交叉偏振飞秒退相泵浦探测技术观察GaN薄膜的光激发载流子动力学弛豫过程。实验结果表明,在低光强下,饱和吸收效应来源于瞬态单光子吸收,高光强下单光子感应自由载流子吸收为非瞬态光动力学过程,其自由载流子弛豫时间约为17 ps。该工作将为GaN薄膜在紫外非线性纳米器件应用以及GaN薄膜非线性过程的机制分析理解提供新的思路。  相似文献   

3.
水溶性CdTe量子点的三阶光学非线性极化特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用超短脉冲Z扫描技术和光学Kerr效应研究了以巯基丙酸为稳定剂的CdTe量子点水溶液的三阶光学非线性极化特性. 在532nm,30ps和800nm,130fs脉冲激光激发下, 发现分别具有正负相反取值的三阶光学非线性折射率,自由载流子吸收和双光子吸收分别是这两种脉冲激光激发下三阶光学非线性吸收的起因. 测量得到CdTe量子点的三阶光学非线性极化率约为CS2的32倍, 在520—700nm光谱区的CdTe量子点的光学响应时间小于400fs. 关键词: CdTe量子点(QDs) Z扫描 三阶光学非线性极化特性 双光子吸收  相似文献   

4.
程培红  韩俊鹤  顾玉宗 《光子学报》2004,33(10):1176-1179
利用皮秒激光光源,采用z扫描技术研究了一种新型金属有机化合物的三阶非线性光学性质以及光限幅特性.z扫描研究结果表明,这种化合物在1064 nm波长激光激发下的三阶非线性极化率χ(3)为3.8×10-14 esu,并且存在双光子吸收.光限幅实验结果显示双光子吸收和非线性折射两种不同机制决定了该化合物的光限幅特性.  相似文献   

5.
InP纳米颗粒的超快动力学和光学非线性   总被引:3,自引:0,他引:3  
通过飞秒泵浦-探测方法测量了波长为800 nm时InP半导体纳米颗粒激发态的瞬态动力学过程。观察到一个快速的光致漂白建立和一个漂白的恢复过程,分析饱和吸收的来源可能是带填充效应引起跃迁的饱和吸收。对于漂白恢复中的快过程是由于自由载流子的弛豫,而慢成分是由于光激发载流子在很短的时间内受陷于表面态形成的限域载流子的弛豫。通过飞秒光克尔效应(OKE)方法测量材料的超快非线性响应曲线,计算了材料的光学三阶非线性极化率,分析了非线性的来源。  相似文献   

6.
基于半导体光放大器四波混频原理的光采样   总被引:6,自引:2,他引:4  
建立了可研究强超短光脉冲放大特性且包含自由载流子吸收、受激辐射、双光子吸收、光谱烧孔和超快非线性折射效应的半导体光放大器理论模型,用以建立脉冲四波混频模型,并进一步仿真了基于半导体光放大器的光采样过程,重点讨论了自由载流子吸收、双光子吸收效应对采样特性的影响。仿真结果与实验结果相符。  相似文献   

7.
在超短脉冲抽运光作用下,利用双光子激发研究了多晶金刚石非线性吸收和非线性折射的动力学演化过程。在非线性吸收动力学实验中,观察到了金刚石样品中被激发载流子的两个不同的复合过程,时间尺度分别在百皮秒量级和纳秒量级,精确得到了不同抽运光能量作用时两个过程各自的时间常数。在非线性折射动力学实验中,观察到了金刚石样品中由非简并双光子吸收过程所引起的正的非线性折射率变化,得到了样品的三阶非线性系数。  相似文献   

8.
郑加金  陆云清  李培丽 《物理学报》2010,59(7):4687-4693
以532nm皮秒脉冲作抽运光,采用单光束Z-扫描技术对具有激发态分子内质子转移效应的有机分子2-(2′-羟基苯基)苯并噻唑(HBT)在其双光子吸收区的非线性光学特性进行了研究.实验结果表明,对532nm波长的光,HBT分子存在明显的双光子吸收.通过拟合开孔Z-扫描实验数据,求解了HBT分子在其双光子吸收区的非线性吸收系数,并探讨了抽运光强度对介质双光子吸收效应的影响.采用高斯分解法,通过拟合闭孔Z-扫描除以开孔Z-扫描数据,理论推导并计算了在介质对抽运光存在非线性吸收的情况下HBT分子的非线性折射率,以及不同入射光强度时HBT分子的三阶非线性极化率实部和虚部的值.计算结果表明,理论分析与实验结果较好地符合,这些结果为进一步研究和开发此类材料的应用提供了理论与实验依据.  相似文献   

9.
王凯  龙华  付明  张莉超  杨光  陆培祥 《物理学报》2011,60(3):34209-034209
采用纳米球蚀刻法制备了Au纳米颗粒阵列.并通过扫描电子显微镜观测了其表面形貌,表明三角形的Au纳米颗粒呈阵列状分布.采用Z扫描方法(800 nm, 50 fs)测量了Au纳米颗粒阵列的三阶非线性光学特性.在较小的激发功率下,结果呈现出双光子吸收效应,随着激发功率不断增加,出现了双光子吸收饱和的过程;非线性折射则呈现出自散焦效应.这种高效率的非线性响应机理使得该种Au纳米颗粒阵列在高速全光开关中有潜在的应用价值. 关键词: 纳米球蚀刻技术 Au纳米颗粒 三阶光学非线性  相似文献   

10.
硒化镉是一种可用于X射线全光分幅相机和全光条纹相机的重要探测材料。用基于相位物体的泵浦探测方式,研究了硒化镉在1030nm波长,飞秒脉冲下的载流子超快动力学和非线性光学特性。得到了双光子吸收系数、载流子吸收截面、载流子复合时间等参数。实验表明,硒化镉载流子的动力学和非线性特性是由束缚电子和载流子共同决定的。束缚电子的克尔效应和双光子激发都是瞬态的,而载流子复合持续了较长时间。这些参数和载流子图像的的获得,为X射线超快探测器件的设计和改进提供了参考。  相似文献   

11.
檀慧明  席淑珍 《光子学报》1996,25(6):530-536
用近简并三波混频实验方法对半导体CdS0.4Se0.6掺杂玻璃在非谐振透明区的三阶光学非线性进行了研究.该实验消除了由于双光子吸收光生载流子的非线性折射产生的五阶非线性效应,仅获得速度快的三阶光学非线性响应.研究结果表明,在非谐振透明区,CdS0.4Se0.6掺杂玻璃的三阶非线性极化率并不比它的基底玻璃大很多.量子尺寸效应没有有意义地提高掺杂玻璃中CdS0.4Se0.6微晶的三阶非线性极化率,即使较小激子吸收峰的出现也没有发现明显的变化.  相似文献   

12.
张玮  王迎威  肖思  顾兵  何军 《发光学报》2017,(12):1605-1610
基于飞秒激发Z扫描实验技术,研究了氮化镓薄膜和不同铝掺杂含量的掺铝氮化镓(以下简称铝镓氮)薄膜的超快非线性光学响应特性。在开孔Z-scan测试中,纯Ga N晶体薄膜表现出典型的双光子吸收特性,双光子吸收系数为3.5 cm/GW,且随着激发光强的增大而逐渐减小。随后测试了不同铝掺杂含量的Al_xGa_(1-x)N薄膜的非线性吸收系数。结果表明,随着铝掺杂摩尔分数的提高(0,19%,32%,42%),非线性吸收系数逐渐减小(18,10,6,5.6 cm/GW)。结合半导体非线性吸收理论分析,Al_xGa_(1-x)N薄膜材料的非线性过程主要是双光子吸收主导非线性响应物理过程。实验结果与半导体双光子吸收过程Sheik-Bahae理论符合得很好。  相似文献   

13.
童唯扬  王正岭 《强激光与粒子束》2018,30(3):034102-1-034102-5
采用自由基浓度起伏理论结合光镊集聚效应,理论研究了飞秒激光双光子加工的线宽问题。根据双光子光聚合过程中自由基浓度随时间变化的关系,考虑光镊效应对自由基分布范围的影响,得到了飞秒激光双光子加工线宽的表达式。研究了线宽随扫描速度与激光功率的变化关系,并讨论了不同光引发剂对线宽的影响。得到了以自由基浓度起伏为基础,并考虑光镊效应的双光子加工线宽表达式,该结果与实验结果相符。研究结果为飞秒激光双光子加工的研究提供了新的思路,为光镊集聚效应对线宽影响的实验研究提供了理论依据。  相似文献   

14.
本文研究了倒Y型四能级系统中自发辐射诱导相干对探测场的色散和吸收特性的影响。在稳态条件下利用密度矩阵微扰理论推导出了密度矩阵的迭代解。数值分析了自发辐射诱导相干对线性和非线性折射率和吸收系数的影响,分析了泵浦场和耦合场偏离双光子共振对弱探测场色散和吸收特性的影响。研究发现自发辐射诱导相干使弱探测光的线性和非线性折射率增强,同时形成一个较宽的透明窗。在没有自发辐射诱导相干的情况下,泵浦场和耦合场偏离双光子共振对探测场的线性和非线性折射率影响明显,在有自发辐射诱导相干的情况下,泵浦场和耦合场偏离双光子共振使得探测场的线性透明窗变窄,非线性吸收增加。  相似文献   

15.
光学总论     
量子光学 O431.2 2004020801 飞秒脉冲泵浦双光子纠缠量子密码=Quantum cryptography with two-photon entangled state pumped by femtosecond pulses[刊,中]/江云坤(福州大学电子科学与应用物理系.福建,福州(350002)),李剑…∥福光技术,一2003,25(2).—21-24 利用超短飞秒脉冲激光泵浦Ⅱ型BBO非线性光学晶体,晶体的非线性效应的参量下转换过程会产生偏振纠缠的双光子对。从实验上讨论了脉冲纠缠光子对的密码传送,并分析密码通信的安全性。图2参8(杨妹清) O431.2 2004020802 非线性孪相干态的光子统计性质=Nonclassical effects of the nonlinear pair coherent states[刊,中]/宋同强(宁波大学物理系.浙江,宁波(315211)),诸跃进∥光学学报.一2003,23(8).—906-909  相似文献   

16.
报道了在调Q的Nd∶YAG激光器泵浦下用Z扫描技术对具有分子内质子转移(ESIPT)特性的分子2(2′羟基苯基)间氮杂氧茚(HBO)的光学非线性的研究。结果表明:对1.06μm的光,HBO无非线性吸收,其三阶非线性极化率不随入射光强而变;而在0.53μm的激光作用下,HBO表现出显著的双光子吸收,其双光子吸收系数随泵浦光强增强而减小,而其三阶非线性极化率实部则随泵浦光强的增强而增大。在建立双光子泵浦产生激发态分子内质子转移动态模型的基础上,通过理论计算很好地解释了实验现象  相似文献   

17.
Fe2O3纳米微粒溶胶非线性光学特性的Z-扫描研究   总被引:3,自引:0,他引:3       下载免费PDF全文
利用Z扫描技术在透明区域研究了Fe2O3纳米微粒水溶胶和表面包覆有机溶胶的非线性光学特性,给出了非线性折射率γ、双光子吸收系数β、自由载流子折射系数σr和自由载流子吸收截面σab等重要物理参数,讨论了自由载流子效应对Fe2O3纳米微粒非线性特性的影响 关键词:  相似文献   

18.
利用飞秒激光泵浦探测技术,通过改变光学参数,如中心波长、功率,分别对未故意掺杂高纯n型砷化镓的差分反射谱进行研究,进而分析室温下砷化镓光生载流子动力学过程.首先,当泵浦光功率恒为100mW,探测光功率恒为10mW时,随着中心波长的增大,差分反射率峰值随之增大,信噪比也随之增加.其次,通过拟合不同延迟时间下泵浦光功率和差分反射率的实验曲线,并和理论模型比较后发现,在一定范围内的泵浦功率和差分反射率呈线性相关,未故意掺杂高纯n型砷化镓的饱和载流子浓度为(3.590 1±0.310 3)×1017 cm~(-3).在此基础上,把光生载流子动力学过程分为3个过程:804±67fs的光激发过程、134~268fs的初始散射过程、1ps和3~6ps的复合过程.研究表明,差分反射率与探测功率不存在显著的依赖性,但差分反射谱的信噪比与探测功率存在相关性.  相似文献   

19.
应用北京自由电子激光(BFEL)对典型的红外光电子材料Hg1-xCdxTe ,InSb和InAs进行了非线性光吸收研究.利用FEL的高光子密度和皮秒量级的短脉冲宽度特性,研究了双光子吸收(TPA)以及光生载流子吸收(FCA)共同作用机理,从实验上直接证实了在强入射能量下,FCA是不可忽略的光吸收过程,提取了精确的自由载流子吸收截面参数. 关键词: FEL 双光子吸收 光生载流子吸收 吸收截面 载流子寿命  相似文献   

20.
尚小明  杨斌洲 《光学学报》1997,17(5):26-532
报道了在调Q的Nd:YAG激光器泵浦下用Z-扫描技术对具有分子内质子转移特性的分子2-(2‘-羟基苯基)间氮杂氮茚的光学非线性的研究。结果表明:对1.06μm的光HBO无非线性吸收,其三阶非互性极化率不随入射光强而变,而在0.53μm的激光作用下,HBO表现出显著的双光子吸收,其双光子吸收系数随泵浦光强增强而减小,而其三阶非线性极化率实部则随泵浦光强的增强而增大,在建立双光子泵浦产生激发态分子内质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号