首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scanning tunneling microscope-light emission (STM-LE) from the Si(1 1 1)-(7×7) surface has been measured using silver tips. For silver tips photon emission was enhanced by more than 100 times as compared with that for tungsten or platinum–iridium alloy tips. A broad spectrum with a single peak at ∼2.25 eV was observed. The spectrum obtained can be reproduced by a theory based on the macroscopic dielectric response of the tip-sample system, indicating that the observed emission arises from the localized plasmons on the silver tip excited by tunneling electrons. Spatial variations in the emission intensity at the atomic scale was observed even under low bias voltage (2 V) and low tunneling current (1 nA) conditions.  相似文献   

2.
Energy transfer between CdSe quantum dots (QDs) as donors and Zn phthalocyanine (Zn-Pc) molecules as acceptors was studied using steady-state photoluminescence and time-correlated single photon counting techniques. With the latter technique it is evaluated that the lifetime of Zn-Pc emission increases from 4 ns to ca. 30 ns on 460 nm excitation in the presence of the QDs. The concomitant decrease in the lifetime of the QDs emission (from 23.5 to 18.4 ns) indicates that the excitation of Zn-Pc occurs not only through reabsorption but also through fluorescence resonance energy transfer.  相似文献   

3.
Quantum well infrared photodetectors (QWIP) are good candidates for low photon flux detection in the 12–20 μm range. For particularly low incident power applications, it can be interesting to reduce the operating temperature to reach the ultimate performance of the QWIP (low dark current, low noise, high detectivity). Nevertheless, once the QWIP operates in the tunneling regime, the dark current is no longer improved by reducing the temperature. Thus, further improvement of the performance needs a microscopic understanding of the physical phenomena involved in QWIP operation in the tunneling regime. In this paper we focus on the dark current of QWIP operated at very low temperature (4–20 K). Experimental results obtained on a 14.5 μm peaking device revealed a plateau regime in the IV curves. We first modeled the dark current using the WKB approximation, but it failed to reproduce the shape and order of magnitude of the phenomenon. As an improvement, we developed a scattering formalism. Our model includes all the most common interactions observed in GaAs: optical phonon, acoustical phonon, alloy disorder, interface roughness, interaction with ionized impurities and between carriers. We demonstrate that, as far as the tunneling regime is concerned, the dominant interaction is the one between electron and ionized impurities, which allows us to conclude on the influence of the doping profile on the dark current.  相似文献   

4.
In-situ voltage treatment to induce chemical contrast in scanning tunneling microscopy images has previously been demonstrated only in one case, i.e., with tips modified with a hydrogen bond acceptor. In this work, this method has been applied to induce chemical contrast using tips modified with a self-assembled monolayer of 4-mercaptobenzoic acid, a hydrogen bond donor. Chemical contrast enhancement, which allows recognition of particular functional groups, is ascribed to the chemically selective interaction of the hydrogen bond donating carboxyl group of 4-mercaptobenzoic acid and the hydrogen bond accepting ether oxygens in sample monolayers formed on highly oriented pyrolytic graphite. Surfaces initially showing no chemical contrast enhancement were made to show such contrast enhancement by applying a + 2.0 V pulse to the STM tip for 15 s. The chemical contrast could also be removed from images using 15 s treatments with a voltage of the opposite sign, i.e., ? 2.0 V. The effectiveness of inducing chemical contrast using this voltage treatment and the tip lifetime are compared for tips modified with 4-mercaptopyridine and 4-mercaptobenzoic acid.  相似文献   

5.
Photoluminescence of microcrystalline CsPbBr3 films grown from the amorphous phase shows stimulated emission not only at cryogenic temperature but also at room temperature, in great contrast to the case for bulk CsPbBr3 single crystals, where no stimulated emission occurs even at 4.2 K. This is the first demonstration of room temperature stimulated emission from metal halide compounds.The stimulated emission is so strong that single-path-light-amplification stimulated emission across the film thickness is observed at relatively low threshold excitation intensities of ∼50 kW cm−2 at 77 K and ∼100 kW cm−2 at 295 K suggesting a large optical gain. The physical origin of the stimulated emission is assigned as due to free exciton-free exciton inelastic collision. The large-gain mechanism is attributable to giant oscillator strength effect characteristic of excitonic superradiance recently reported in this issue.  相似文献   

6.
The imaging of NiO(100)(1 × 1) islands embedded in Ag(100) by scanning tunneling microscopy is addressed. As a function of tunneling conditions and tip termination it is possible to resolve the NiO–vacuum interface, the second oxide layer as well as the NiO-substrate interface with atomic contrast. We find that for sub-monolayer coverages of NiO the oxide islands consist of an essentially defect-free surface layer at the vacuum interface with a number of NiO second layer patches incorporated into the Ag substrate underneath. The oxide layer is surrounded by a rim of a NiO bilayer of monoatomic width. A reduction of the density of states between a NiO monolayer and local NiO bilayer stackings is suggested to be responsible for the observed appearance of mosaic patches at the island surface.  相似文献   

7.
J.Q. Song  T. Ding  J. Li  Q. Cai 《Surface science》2010,604(3-4):361-365
The current–voltage (IV) characteristics of the nanosized metal–semiconductor contacts formed between the epitaxially grown ErSi2 islands and p-Si(0 0 1) substrate are measured in situ by the scanning tunneling microscope. Experimental results show that the current densities passing through the nanocontacts are five orders of magnitude larger than that of the macroscopic ones and have an obvious dependence on the contact area. Especially, it is found that I–V characteristics of the contacts are sensitive to the sample surface adsorption. Our investigations indicate that surface conduction plays an important role in the electrical transport process from ErSi2 islands to the Si(0 0 1) substrate. Furthermore, for the nanocontacts with surface currents suppressed effectively, the ideality factor and the effective Schottky barrier height are estimated by using the standard thermionic emission model. Our analysis suggests that the current through the interface between ErSi2 nanoislands and the p-Si(0 0 1) substrate is enhanced due to the effects of tunneling and image force lowering.  相似文献   

8.
Extreme ultra-violet (EUV) lasers, X-ray lasers and other backlighter sources can be used to probe high-energy density materials if their brightness can overcome self-emission from the material. We investigate the maximum plasma thickness of aluminum, silicon and iron that can be probed with EUV or X-ray photons of energy 89–1243 eV before self-emission from the plasma overwhelms the backlighter output. For a uniform plasma, backlighter transmission decreases exponentially with increasing thickness of the material following Beer's law at a rate dependent on the plasma opacity. We evaluate the plasma opacity with the Los Alamos TOPS opacity data. The self-emission is assumed to be either that of a black body to arise from a plasma in LTE or to only consist of free–free and free–bound emission. It is shown that at higher plasma temperature (?40 eV), EUV radiation (e.g. photon energy=89 eV) can probe a greater thickness of plasma than X-ray radiation (e.g. photon energy=1243 eV).  相似文献   

9.
Time-resolved photoluminescence (PL), steady-state PL, and electroluminescence (EL) techniques have been used to characterize the carrier relaxation processes and carrier escape mechanisms in self-assembled InAs/GaAs quantum dot (SAQD) p-i-n structures under reverse bias. The measurements were performed between 5 K and room temperature on a ring mesa sample as a function of bias. At 100 K, the PL decay time originating from the n  =  1 SAQD decreases with increasing reverse bias from ∼3 ns under flat band condition to∼ 400 ps for a bias of −3 V. The data can be explained by a simple model based on electron recombination in the quantum dots (QDs) or escape out of the dots. The escape can occur by one of three possible routes: direct tunneling out of the distribution of excited electronic levels, thermally assisted tunneling of ground state electrons through the upper excited electronic states or thermionic emission to the wetting layer.  相似文献   

10.
Bachmann M  Memmel N  Bertel E 《Surface science》2011,605(13-14):1263-1270
Noble metal nanostructures of Au, Ag and Cu were prepared on two types of carbon-modified W(110) surfaces—R(15 × 12) and R(15 × 3)—and investigated by means of scanning tunneling microscopy. For all deposited metals qualitatively the same behaviour is observed: On the R(15 × 12)-template always isotropic clusters are formed. In contrast, on the R(15 × 3)-substrate the anisotropy of the nanostructures can be tuned from clusters at low temperatures via thin nanowires to thicker nanobars at high deposition temperatures. At intermediate temperatures on the R(15 × 3) the anisotropic Au nanowires arrange themselves into straight lines along domain boundaries induced by deposition of the Au metal. Similarities and differences to Au nanostructures as recently reported by Varykhalov et al. [A. Varykhalov, O. Rader, W. Gudat. Physical Review B 77, 035412 (2008).] are discussed.  相似文献   

11.
An experimental study on beam dynamics in MIRRORCLE-20, a tabletop storage ring of 15 cm orbit radius, was performed. Measurement of the infrared (IR) synchrotron light is the tool of this study. The IR emission is enhanced by a circular optics, named photon storage ring (PhSR), placed around the electron orbit, and is collected by a magic mirror associated with two plane mirrors in the storage ring. The measured average IR power in mid-IR region (λ < 50 μm) is ~59 mW. The observed stored beam current is about 1.2 A at maximum, which represents a record for a storage ring. The observed beam size is about 74 × 3 mm2. We conclude that this very long beam size is due to the large betatron oscillation of 2/3 resonance injection.  相似文献   

12.
We develop a first principles method to compute the magnetic axis of a crystal surface from corrugation amplitudes of spin-polarized scanning tunneling microscopy measurements. In this paper, we present the detailed electronic structure information of antiferromagnetic and ferromagnetic Mn overlayers on W(1 1 0), our model system for spin-polarized tunneling on the atomic scale. We also perform image simulations on all surfaces. It is shown that the images of Mn overlayers are very sensitive to magnetic ordering of the surface, and while a high magnetic contrast can in principle be obtained, surface corrugation itself is generally at the lower limit of image resolution.  相似文献   

13.
C.K. Egan  A. Choubey  A.W. Brinkman 《Surface science》2010,604(19-20):1825-1831
The morphology and electronic structure of the (110) surface of semi-insulating CdZnTe has been studied by scanning tunneling microscopy and spectroscopy. The surface shows a 1 × 1 reconstruction whilst the tunneling spectra are highly rectified implying that imaging could only be performed at negative sample bias. Theoretical computations of the tunnel current have been used to fit to experiment to reveal the origin of each tunneling component and explain the rectification observed. The implications of various surface defects and surface states are considered. A discussion on scanning tunneling microscopy and spectroscopy on semi-insulating materials in general is also given.  相似文献   

14.
Barrier-height (BH) imaging using scanning tunneling microscopy (STM) was used to study the growth of Co films on Au(001) surfaces. We have observed BH of metastable bcc Co film (> 1 ML) for the first time, and that showed a large BH value (~ 6 eV), whereas the observed BH of the Au(001) surface (~ 3.5 eV) was consistent with the previous results. The origin of the large BH was qualitatively understood by considering that 3d electrons for tunneling are dominant for the Co(001) surface. We have observed numerous islands with different sizes and heights after 0.15 ML Co coverage and successfully obtained, from the BH imaging, an element-specific contrast, i.e. recognizing aggregated Au islands and Co islands, and information about inhomogenities of BH with proper consideration of the artifacts near the step edges. The height modification by the large BH difference is discussed.STM/BH studies of FePt films revealed two kinds of monolayer heights, the sum which was equal to the c axis lattice constant of L10 FePt. Two different dI/dz signal levels were observed on atomically flat terraces.  相似文献   

15.
We have used a time-dependent tunneling current mode based on scanning tunneling microscopy/spectroscopy (STM/STS) to study the tracer diffusion of CO molecules along steps and on terraces of Pt(1 1 1). The results show that the hopping rate of CO molecules along steps is about 10 times faster than that on terraces in the measured temperature range. The diffusion activation energies are 5.1 kcal/mol and 3.8 kcal/mol on terraces and along steps, respectively. The lower activation energy and faster hopping rate for CO molecules diffusing along steps provide evidence that steps provide fast diffusion channels for CO molecules on stepped Pt(1 1 1) surfaces.  相似文献   

16.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

17.
A dual-band (two-color) tunneling-quantum dot infrared photodetector (T-QDIP) structure, which provides wavelength selectivity using bias voltage polarity, is reported. In this T-QDIP, photoexcitation takes place in InGaAs QDs and the excited carriers tunnel through an AlGaAs/InGaAs/AlGaAs double-barrier by means of resonant tunneling when the bias voltage required to line up the QD excited state and the double-barrier state is applied. Two double-barriers incorporated on the top and bottom sides of the QDs provide tunneling conditions for the second and the first excited state in the QDs (one double-barrier for each QD excited state) under forward and reverse bias, respectively. This field dependent tunneling for excited carriers in the T-QDIP is the basis for the operating wavelength selection. Experimental results showed that the T-QDIP exhibits three response peaks at ~4.5 (or 4.9), 9.5, and 16.9 μm and selection of either the 9.5 or the 16.9 μm peak is obtained by the bias polarity. The peak detectivity (at 9.5 and 16.9 μm) of this detector is in the range of 1.0–6.0 × 1012 Jones at 50 K. This detector does not provide a zero spectral crosstalk due to the peak at 4.5 μm not being bias-selectable. To overcome this, a quantum dot super-lattice infrared photodetector (SL-QDIP), which provides complete bias-selectability of the response peaks, is presented. The active region consists of two quantum dot super-lattices separated by a graded barrier, enabling photocurrent generation only in one super-lattice for a given bias polarity. According to theoretical predictions, a combined response due to three peaks at 2.9, 3.7, and 4.2 μm is expected for reverse bias, while a combined response of three peaks at 5.1, 7.8, and 10.5 μm is expected for forward bias.  相似文献   

18.
Scanning tunneling microscopy study showed that the (2 × 2) reconstruction on the (001) surface of SrTiO3 should have a surface structure with a 4-fold symmetry. The previously proposed solution for the (2 × 2) reconstruction with the p2gm symmetry only has a 2-fold symmetry. In this study density functional theory study was carried out to propose a possible surface structure with the p4mm surface symmetry which matches the scanning tunneling microscopy images and suggests that two different (2 × 2) surface structures exist. The formation of the (2 × 2) reconstruction with the p4mm symmetry may be due to the kinetics as it has slightly higher surface energy than the one with the p2gm symmetry.  相似文献   

19.
Continuous-time photoelectron spectroscopy (PES) and continuous-time core-level photon-stimulated desorption (PSD) spectroscopy were used to study the monochromatic soft X-ray-induced reactions of CCl2F2 molecules adsorbed on Si(111)-7 × 7 at 30 K (CCl2F2 dose = 2.0 × 1014 molecules/cm2, ~ 0.75 monolayer) near the Si(2p) core level. Evolution of adsorbed CCl2F2 molecules was monitored by using continuous-time photoelectron spectroscopy at two photon energies of 98 and 120 eV to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~1.4 × 10? 18 and ~ 8.0 × 10? 18 cm2, respectively. Sequential F+ PSD spectra obtained by using continuous-time core-level photon-stimulated desorption spectroscopy in the photon energy range of 98–110 eV show the variation of their shapes with photon exposure and depict the formation of surface SiF species. The dissociation of CCl2F2 molecules adsorbed on Si(111)-7 × 7, irradiated by monochromatic soft X-ray in the photon energy range of 98–110 eV, is mainly due to dissociative electron attachment and indirect dipolar dissociation induced by photoelectrons emitted from the silicon surface.  相似文献   

20.
In this paper, a novel structure for quantum ring inter-subband photodetectors (QRIP) is proposed to reduce its dark current. Some additional layers including asymmetric multi-barrier resonant tunneling (AMBRT) in absorption region layers are exploited to provide near unity tunneling probability for generated photocurrents and completely reject thermally generated electrons. AMBRT structure consists of three asymmetric AlGaAs barriers and two InGaAs wells which are designed for operation wavelength of generated photocurrents by absorption of 20 μm. Simulation results show that AMBRT can considerably reduce the dark current compared to previously proposed resonant tunneling structure about three orders of magnitude. As a consequent, higher specific detectivity for AMBRT-QRIP is obtained in the order of ∼1011 cm Hz1/2/W at 100 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号