首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of photodissociation dynamics of oriented LiH molecules in different dissociation channels is proposed based on time dependent quantum wave packet theory. The enhancement of molecular orientation on the photodissociation of LiH is obvious with our theoretical scheme. The results show that the molecular orientation in the ground state has a great effect on the angular distributions of wave packets. By using the proper laser pulses and controlling the polarization direction of the laser pulses, the enhancement of the photodissociation could be realized. After the molecular orientation, an optimal dissociation channel is observed with an improved dissociation probability. Compared with the results without molecular orientation, the maximal dissociation probability is increased by 8.1% in the indirect dissociation channel and 30.7% in the direct dissociation channel. The enhancement effect is more obvious in the direct dissociation channel, which provides a possible method to manipulate the dissociation of LiH molecules experimentally. Additionally, the photodissociation process of LiH also relies on the electric intensity and delay time of two pump pulses.  相似文献   

2.
We demonstrate control of electronic population transfer in molecules with the help of appropriately shaped femtosecond laser pulses. To this end we investigate two photosensitizer dyes in solution being prepared in the triplet ground state. Excitation within the triplet system is followed by intersystem crossing and the corresponding singlet fluorescence is monitored as a measure of population transfer in the triplet system. We record control landscapes with respect to the fluorescence intensity on both dyes by a systematic variation of laser pulse shapes combining second order and third order dispersion. In the strong-field regime we find highly structured topologies with large areas of maximum or minimum population transfer being insensitive over a certain range of applied laser intensities thus demonstrating robustness. We then compare our experimental results with simulations on generic molecular potentials by solving the time-dependent Schr?dinger equation for excitation with shaped pulses. Control landscapes with respect to population transfer confirm the general trends from experiments. An analysis of regions with maximum or minimum population transfer indicates that coherent processes are responsible for the outcome of our excitation process. The physical mechanisms of joint motion of ground and excited state wave packets or population of a vibrational eigenstate in the excited state permit us to discuss the molecular dynamics in an atom-like picture.  相似文献   

3.
Revealing a proper reaction coordinate in a chemical reaction is the key step towards elucidation of the molecular reaction dynamics. In this report, we investigated the dynamics of intramolecular charge transfer (ICT) of 8-aminopyrene-1,3,6-trisulfonic acid (APTS) occurring in the excited state by time-resolved fluorescence (TF) and TF spectra. Accurate reaction rates and rate-dependent nuclear wave packets in the product state allow detailed investigation of the molecular reaction dynamics. The ICT rate is solvent dependent: (34 fs)−1, (87 fs)−1, and (∞)−1 in water, formamide, and dimethylformamide, respectively. By recording spectra of the nuclear wave packets for different reaction rates, chemical species responsible for the emission spectra can be positively identified. The origin of the wave packets can be deduced from the amplitude change of the wave packets at different reaction rates, and the vibrational modes that are associated with the reaction coordinate could be identified. Theoretical calculations of the vibrational reorganization energies reproduce the experimental spectrum of the nuclear wave packets and corroborate the conclusions.  相似文献   

4.
通过求解D2分子在飞秒激光场中的含时薛定谔方程,研究了室温下D2分子在超快1s秒激光驱动下的的转动波包动力学.选择用第一束超短飞秒脉冲与温度为300K的D2分子系综相互作用产生一个相干转动波包,用第二束超短匕秒脉冲在波包的1/4和3/4恢复周期选择操纵D2分子取向.研究结果表明,通过选择两束超短飞秒脉冲的延迟时间,可以有效控制D2分子转动波包中奇偶态的相对布居,从而选择性的控制D2分子取向.  相似文献   

5.
In this paper we describe an application of the trajectory-based semiclassical Liouville method for modeling coherent molecular dynamics on multiple electronic surfaces to the treatment of the evolution and decay of quantum electronic coherence in many-body systems. We consider a model representing the coherent evolution of quantum wave packets on two excited electronic surfaces of a diatomic molecule in the gas phase and in rare gas solvent environments, ranging from small clusters to a cryogenic solid. For the gas phase system, the semiclassical trajectory method is shown to reproduce the evolution of the electronic-nuclear coherence nearly quantitatively. The dynamics of decoherence are then investigated for the solvated systems using the semiclassical approach. It is found that, although solvation in general leads to more rapid and extensive loss of quantum coherence, the details of the coupled system-bath dynamics are important, and in some cases the environment can preserve or even enhance quantum coherence beyond that seen in the isolated system.  相似文献   

6.
The problem of vibrational wave packet dynamics in the system of two electronic states of a diatomic molecule, where the states are coupled by infinitely short light pulses, is solved. The electronic states were modeled by shifted harmonic oscillators with different frequencies. Exact expressions for the probability densities of the wave packets in the ground and excited states were derived. The spatial, spectral, and temporal characteristics of the wave packets, namely, the range of motion, spatial width, mean energy, spectral width (the mean number of vibrational states in a wave packet), and the autocorrelation function, were calculated as functions of the molecular parameters (the frequency ratio and the distance between the potential minima) and of the delay time between the light pulses. The possibility of controlling the mean energy and spectral width of the wave packets in the ground electronic state by varying the delay time is considered. It was shown that "squeezed" wave packets can be prepared in the ground electronic state if the upper electronic state is shallow.  相似文献   

7.
The contributions of different eigenstates of a nonlinearly coupled oscillator system to the expansion of a local wave packet are analyzed from an information theoretical point of view. Such a wave packet can be considered as a nonstationary vibrational state of an electronically excited manifold of a molecule after Franck–Condon type initial preparation. The distributions of these contributions are compared to their individual stochastic ideals using Ruch's concept of “mixing distances.” The stochastic ideals are constructed via a probability diffusion process between neighboring states of the original distributions, representing an initial preparation corresponding to a Hamiltonian with only irregular eigenstates. Gaussian minimum uncertainty wave packets as initial states in a two-dimensional nonlinear oscillator system with classically regular and chaotic energy ranges are studied numerically. It is found that distance measures, partly reflecting the “mixing distance” of a distribution from its stochastic ideal, show a large fluctuation in the classical regular energy range and a small fluctuation in the range where most of the classical trajectories move chaotically. This indicates that for this type of initial preparation process the actual location of the initial state in space plays the dominant role for the dynamics in the low-energy range while for wave packets starting near the dissociation energy of the model system this location becomes unimportant.  相似文献   

8.
It has recently been shown that matter‐wave interferometry can be used to imprint a periodic nanostructure onto a molecular beam, which provides a highly sensitive tool for beam displacement measurements. Herein, we used this feature to measure electronic properties of provitamin A, vitamin E, and vitamin K1 in the gas phase for the first time. The shift of the matter‐wave fringes in a static electric field encodes the molecular susceptibility and the time‐averaged dynamic electric dipole moment. The dependence of the fringe pattern on the intensity of the central light‐wave diffraction grating was used to determine the molecular optical polarizability. Comparison of our experimental findings with molecular dynamics simulations and density functional theory provides a rich picture of the electronic structures and dynamics of these biomolecules in the gas phase with β‐carotene as a particularly interesting example.  相似文献   

9.
The opportunities offered by utilizing time-independent Hamiltonian structure as controls are explored for manipulating quantum dynamics. Two scenarios are investigated using different manifestations of Hamiltonian structure to illustrate the generality of the concept. In scenario I, optimally shaped electrostatic potentials are generated to flexibly control electron scattering in a two-dimensional subsurface plane of a semiconductor. A simulation is performed showing the utility of optimally setting the individual voltages applied to a multi-pixel surface gate array in order to produce a spatially inhomogeneous potential within the subsurface scattering plane. The coherent constructive and destructive electron wave interferences are manipulated by optimally adjusting the potential shapes to alter the scattering patterns. In scenario II, molecular vibrational wave packets are controlled by means of optimally selecting the Hamiltonian structure in cooperation with an applied field. As an illustration of the concept, a collection (i.e., a level set) of dipole functions is identified where each member serves with the same applied electric field to produce the desired final transition probability. The level set algorithm additionally found Hamiltonian structure controls exhibiting desirable physical properties. The prospects of utilizing the applied field and Hamiltonian structure simultaneously as controls is also explored. The control scenarios I and II indicate the gains offered by algorithmically guided molecular or material discovery for manipulating quantum dynamics phenomenon.  相似文献   

10.
The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.  相似文献   

11.
Over many millennia, humankind has thought to explore phenomena on an ever shorter time scale. In this race against time, femtosecond resolution (1 fs=10(-15) s) is the ultimate achievement for studies of the fundamental dynamics of the chemical bond. Observation of the very act that brings about chemistry-the making and breaking of bonds on their actual time and length scales-is the wellspring of the field of femtochemistry, which is the study of molecular motions in the hitherto unobserved ephemeral transition states of physical, chemical, and biological changes. For molecular dynamics, achieving this atomic-scale resolution using ultrafast lasers as strobes is a triumph, just as X-ray and electron diffraction, and, more recently, STM and NMR spectroscopy, provided that resolution for static molecular structures. On the femtosecond time scale, matter wave packets (particle-type) can be created and their coherent evolution as a single-molecule trajectory can be observed. The field began with simple systems of a few atoms and has reached the realm of the very complex in isolated, mesoscopic, and condensed phases, as well as in biological systems such as proteins and DNA structures. It also offers new possibilities for the control of reactivity and for structural femtochemistry and femtobiology. This anthology gives an overview of the development of the field from a personal perspective, encompassing our research at Caltech and focusing on the evolution of techniques, concepts, and new discoveries.  相似文献   

12.
The scattered wave packet formalism developed for a quantum subsystem interacting with reservoirs through open boundaries is utilized to calculate the energy-resolved transmission probability. The total wave function is split into incident and scattered components. Markovian outgoing wave boundary conditions are imposed on the scattered or total wave function by the polynomial method. The wave packet correlation function approach is employed to compute the energy-resolved transmission probability for a one-dimensional potential barrier and a one-dimensional model chemical reaction exhibiting a quantum resonance. Accurate results demonstrate that this formalism can significantly reduce the number of grid points required in a dynamical calculation for the reaction probability.  相似文献   

13.
We present results of molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers in the disordered liquid crystalline phase (Lalpha) and compare them to wide-angle X-ray scattering experiments. Though we find a generally good agreement between the simulated and experimental spectra, there are some deviations whose origin has been investigated by a reparametrization of the aliphatic chains' force field. A detailed analysis of the various contribution to the X-ray spectra shows that a non-negligible contribution to the total scattered intensity comes from the headgroups and the head-tail cross correlation.  相似文献   

14.
A semiquantal analysis of condensed phase chemical dynamics, outlined recently for a double-well linearly coupled to dissipative harmonic bath, is formulated in detail to clarify its general features as well as the specifics of the linear and quadratic coupling cases. The theory may be called a "semiquantal time-dependent Hartree (SQTDH)" approach, as it assumes a factorized product of the squeezed coherent state wave packets for the variational subspace of the many-dimensional time-dependent wave function. Due to this assumption, it straightforwardly satisfies the canonicity condition introduced by Marumori et al. is described by a set of Hamilton equations of motion in an extended phase space that includes auxiliary coordinates representing the wave packet widths. The potential in the extended phase space provides a pictorial understanding of the quantum effects affected due to the bath coupling, e.g., suppression of the wave packet spreading in terms of the potential wall developing along the auxiliary coordinates. The idea is illustrated by prototypical models of quartic double-well and cubic metastable potentials linearly and quadratically coupled to the bath. Further applications and extensions, where the SQTDH method will offer a practical approach for introducing quantum effects into realistic molecular dynamics simulations, are also discussed.  相似文献   

15.
Probing electronic femtosecond (fs) coherence among segmental sites that are congested by static and dynamic site disorder and subject to structural relaxation is a big, experimental challenge in the study of photophysics of poly(p-phenylenevinylene). In this work, fs-wave-packet fluorescence interferometry experiments are presented that measure macroscopic coherent kernels and their phase-relaxation in the low-temperature, bottom-state regime of the density-of-states below the migrational threshold energy where downhill site-to-site transfer is marginal. By using freely propagating and tunable 70 fs excitation/probing pulses and employing narrow-band spectral filtering of wave packets, fluorescence interferograms with strongly damped beatings can be observed. The coherences formally follow the in-phase superpositions of two site-optical free-induction-decays and originate from distinct pairs of coherent doorway-states, different in energy and space, each of them being targeted, by two discrete quantum-arrival-states 1(alpha) and 1(beta), via independent, isoenergetic 0-->1 fluorescence transitions. The coherent transients are explained as site-to-site polarization beatings, caused by the interference of two fluorescence correlation signals. The numerical analysis of the damping regime, based upon second-order perturbational solutions, reveals the lower limit value of homogeneous dephasing in the range from T(2) approximately 100 fs to T(2) approximately 200 fs depending on the site-excitation energy of the bottom-states. The experiments enable to look into the formation of the relaxed state as a special molecular process of electron-phonon coupling and hence open-up a quite new perspective in the puzzle of multichromophore optical dynamics and structural relaxation in conjugated polymers.  相似文献   

16.
We calculated the dynamics of nuclear wave packets in coupled electron-vibration systems and their nonlinear optical responses. We found that the quantized nature of the vibrational modes is observed in pump-probe spectra particularly in weakly interacting electron-vibration systems such as cyanine dye molecules. Calculated results based on a harmonic potential model and molecular orbital calculations are compared with experimental results, and we also found that the material parameters regarding the geometrical structure of potential energy surfaces are directly determined by accurate measurement of time-resolved spectra.  相似文献   

17.
利用2D平面模型,求解了描述定向H2^+分子和阿秒XUV脉冲相互作用的薛定谔方程,并求得光电子的角度分布.在计算模型中,采用基态1sσg和第一激发态2pσu的等比例混合态作为初始态,而激光脉冲的光子能量大于电离势,强度为10^14 W/cm^2. 计算结果表明,光电子角分布的非对称性和脉冲的宽度密切相关.这种非对称性实际上是由于初始态的基态和激发态的相干振荡而导致的.当使用长脉冲时,这种相干振荡的周期效应就会被平均而消失,从而产生的光电子能谱会呈对称角分布.  相似文献   

18.
Optimal control simulation is applied to the cis-trans photoisomerization of retinal in rhodopsin within a two-dimensional, two-electronic-state model with a conical intersection [S. Hahn and G. Stock, J. Phys. Chem. B 104, 1146 (2000)]. For this case study, we investigate coherent control mechanisms, in which laser pulses work cooperatively with a conical intersection that acts as a "wave-packet cannon." Optimally designed pulses largely consist of shaping subpulses that prepare a wave packet, which is localized along a reaction coordinate and has little energy in the coupling mode, through multiple electronic transitions. This shaping process is shown to be essential for achieving a high target yield although the envelopes of the calculated pulses depend on the local topography of the potential-energy surfaces around the conical intersection and the choice of target. The control mechanisms are analyzed by considering the motion of reduced wave packets in a nuclear configuration space as well as by snapshots of probability current-density maps.  相似文献   

19.
A linearized optimal control method in combination with mixed quantum/classical molecular dynamics simulation is used for numerically investigating the possibility of controlling photodissociation wave packets of I(2)(-) in water. Optimal pulses are designed using an ensemble of photodissociation samples, aiming at the creation of localized dissociation wave packets. Numerical results clearly show the effectiveness of the control although the control achievement is reduced with an increase in the internuclear distance associated with a target region. We introduce effective optimal pulses that are designed using a statistically averaged effective dissociation potential, and show that they semiquantitatively reproduce the control achievements calculated by using optimal pulses. The control mechanisms are interpreted from the time- and frequency-resolved spectra of the effective optimal pulses.  相似文献   

20.
Detailed experimental studies of the dynamics of self-trapped beams of white light (400-800 nm) in a photosensitive organosiloxane medium are presented. Self-trapped white light beams with similar spatial profiles formed in the organosiloxane at intensities ranging across an order of magnitude (2.7-22.0 W.cm-2). Beam-profiling measurements showed that these spatially and temporally incoherent wave packets propagate without diffracting (broadening) by initiating free-radical polymerization of methacrylate groups and corresponding refractive index changes in the organosiloxane medium. Analyses of their temporal evolution showed that the intensity-dependent behavior of self-trapped white light is similar to that of self-trapped laser light despite the extreme differences in their phase structure and chromaticity; the self-trapped incoherent beams even show the complementary oscillations of width and intensity that is characteristic of self-trapped coherent light. Furthermore, the dynamics of the self-trapped white light beams was found to be strongly correlated to the kinetics of free-radical polymerization and corresponding rates of refractive index changes in the organosiloxane. These studies provide accessible photochemical routes to self-trapped incoherent wave packets, which are extremely difficult to generate in conventional nonlinear optical media that owe their responses to higher-order dielectric susceptibility tensors. This could enable the experimental verification of theoretical models developed for the nonlinear propagation of white light and stimulate research into more complex self-trapping phenomena such as the interactions of self-trapped incoherent beams and spontaneous pattern formation due to modulation instability in a uniform incoherent optical field. These findings also carry potential for the development of self-induced waveguide, optical solder and interconnect technology for incoherent light emitted by incandescent sources or LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号