首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
To prepare a high-performance epoxy resin with excellent thermal, chemical and corrosion stability, diaminoxanthone(DAX) was used to cure diglycidylether of bisphenol-A(DGEBA)-based epoxy resin and blend of DGEBA with functionalized Fe3O4 nanoparticles. Kinetic parameters of curing and thermal degradation of epoxy resin systems were estimated by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA), respectively. The 10% weight loss temperature has been increased from 340 °C to 366 °C and there was an increase in the char yield from 32.6% to 45.3% for the above systems. The corrosion performance of epoxy coated carbon steel was examined by potentiodynamic polarization, along with immersion test in 1.0 mol/L HCl solution. The results showed that epoxy resins cured with DAX had low tendency to corrosion. In addition, the cured epoxy resin containing 10% Fe3O4 had higher anticorrosion activity than bare DGEBA system. The results showed that functionalized Fe3O4 nanoparticles enhanced char formation and improved the thermal stability as well as anticorrosion activity of the resin.  相似文献   

2.
Toughened epoxy resin with excellent properties was obtained by adding organic acid anhydride curing agent and hydroxy-terminated butadiene-acrylonitrile copolymer (HTBN), which is cheaper than CTBN. The anhydride reacts with both epoxy groups on epoxy resin and hydroxyl groups on HTBN. As a result the soft long chains of HTBN and the rigid chain of epoxy resin form one network, giving the resin toughness. Two-phase structure of the toughened resin was observed by SEM and TEM.  相似文献   

3.
The epoxy resin modified by liquid chloroprene-hydroxyethylmethacrylate copolymer (CP-HEMA) is a new kind of structural adhesives with good mechanical properties. By changing its mole-cular structure, it may also have such desirable properties as retardation of combustion, enduringweather aging, inert oils and chemicals. A series of the thermosets of the epoxy resin modifiedby CP-HEMA used as a toughener were prepared. The effects of CP-HEMA content, catalyst con-tent and curing temperature on the mechanical properties of modified epoxy resin system were studied.The thermal weight-loss curves were examined. The two-phase morphology was observed and dis-cussed.  相似文献   

4.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

5.
The curing behavior of diglycidyl ether of bisphenol-A(DGEBA) with different phosphorus containing diamidediimide-tetraamines(DADITAs) was studied by DSC. Eight DADITAs of varying structures were synthesized by reacting 1 mole of pyromellitic anhydride(PMDA)/3,3′-benzophenone tetracarboxylic dianhydride(BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride(NTDA)/4,4′-oxydiphthalic anhydride(ODPA) with 2 mole of L-tryptophan(T) in a mixture of acetic acid and pyridine(3:2 V/V) followed by activaton with thionyl chloride and then condensation with excess of phosphorus containing triamines tris(3-aminophenyl) phosphine(TAP) and tris(3-aminophenyl) phosphine oxide(TAPO). DADITAs obtained by reacting PMDA/BTDA/NTDA/ODPA with L-tryptophan followed by condensation with TAP/TAPO were designated as PTAP, PTAPO, BTAP, BTAPO, NTAP, NTAPO, OTAP and OTAPO respectively. The structural characterization of synthesized DADITAs was done by FTIR,1H-NMR,13C-NMR,31P-NMR spectroscopic techniques and elemental analysis. Thermal stability of the isothermally cured epoxy was investigated using dynamic thermogravimetry analysis. The glass transition temperature(Tg) was highest in DGEBA cured using PTAP. All epoxy thermosets exhibited excellent flame retardancy, moderate changes in Tg and thermal stability. Due to presence of phosphorus in curing agents, all epoxy resin systems met the UL-94 V-0 classification and the limiting oxygen index(LOI) reached up to 38.5, probably because of the nitrogen-phosphorus synergistic effect.  相似文献   

6.
The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied.One of the resins was a bifunctional epoxy resin based on diglycidyl ether ofbisphenol A and the other resin was a multifunctional epoxy novolac resin.Attempt was made to establish a correlation between the structure and the final properties of cured epoxy samples.The blend samples containing high fraction of multifunctional epoxy resin showed higher solvent resistance and lower flexural modulus compared with the blends containing high fraction of bifunctional epoxy resin.The epoxy blends showed significantly higher ductility under bending test than the neat epoxy samples.The compressive modulus and strength increased with increasing of multifunctional epoxy in the samples,probably due to enhanced cross-link density and molecular weight.Morphological analysis revealed the presence of inhomogeneous sub-micrometer structures in all samples.The epoxy blends exhibited significantly higher fracture toughness (by 23% at most) compared with the neat samples.The improvement of the fracture toughness was attributed to the stick-slip mechanism for crack growth and activation of shear yielding and plastic deformation around the crack growth trajectories for samples with higher content of bifunctional epoxy resin as evidenced by fractography study.  相似文献   

7.
A novet toughened epoxy resin was obtained by using aprecopotymer of epoxy resin and hydroxy-terminated butadiene-acrylonitrilecopolymer(HTBN)and amine curing agent.The cured toughened resin hasexcellent mechanical properties due to the two-phase structure,which has beenobserved from SEM and TEM.  相似文献   

8.
2-(Diphenylphosphinyl)-1,4-benzenediol(DPO-HQ) was synthesized by the reaction of diphenylphos- phine oxide(DPO) with 1,4-benzoquinone(BQ), and characterized by Fourier transform infrared(FTIR), and nuclear magnetic resonance(1H NMR, 13C NMR, 31p NMR) spectrometries. The thermal stability of DPO-HQ was investi- gated by thermogravimetric analysis(TGA). Flame retardant epoxy resin was synthesized based on DPO-HQ. The thermal properties and burning performance of cured epoxy resins were measured by differential scanning calorime- try(DSC), thermogravimetric analysis(TGA), limited oxygen index(LOI) and vertical burning test(UL-94V). The morphologies of cured epoxy resins after combustion were investigated by scanning electron microscopy(SEM) and electron probe microanalysis(EPMA). Moreover, the thermal stability(both in air and in N2) of DPO-HQ and its cured epoxy resin was compared with that of 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- oxide(DOPO-HQ) and its cured epoxy resin. The thermal stability of DPO-HQ is comparable with that of DOPO-HQ, while the thermal stability of cured epoxy resin based on DPO-HQ is better than that based on DOPO-HQ.  相似文献   

9.
Poly(butylene terephthalate )-b-poly (tetramethylene glycol) (PBT-b-PTMG) was usedas rheology modifier for the epoxy resin. The segmental copolymer formed spherulites inthe epoxy medium. This copolymer was very effective in endowing yield stresses to theliquid resin. The PTMG segment brought in a lowering of the dissolution temperature ofthe spherulites in the epoxy gel. The cured resin with PBT-b-PTMG as modifier was two-phase materials. The rheology modifier improved the mechanical properties of the curedresin as well. The flexible PTMG segments, however, were not in favour of the tougheningeffect of the modifier. This was attributed to the large domain size of the dispersed phase.  相似文献   

10.
Reaction-induced phase separation in rubber-modified epoxy resin   总被引:1,自引:0,他引:1  
The phase separation mechanism,and structure development during curing of epoxy with a novel liquid rubber-ZR were investigated by time-resolved light scattering,optical microscope and differential scanning calonmetry (DSC) The mixture loaded with curing agent was a single-phase system in the early stage of curing.When the cure reaction proceeded,phase separation took place via the spinodal decomposition induced by polymerization of epoxy resin.This was supported by the characteristic change of light scattering profile with curing time.Cure reaction plays an important role in the progress of phase separation.The bigger the cure reaction rate is,the longer periodic distance will be.The overall two-phase structure was basically locked in when the conversion approached 80% estimated by DSC,and finally the co-continuous two-phase structure was successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号