首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
研究了一类奇异摄动半线性反应扩散方程的自适应网格方法.在任意非均匀网格上建立迎风有限差分离散格式,并推导出离散格式的后验误差界,然后用该误差界设计自适应网格移动算法.数值实验结果证明了所提出的自适应网格方法的有效性.  相似文献   

2.
In this article, we consider a system of nonlinear singularly perturbed differential equations with two different parameters. To solve this system, we develop a weighted monotone hybrid scheme on a nonuniform mesh. The proposed scheme is a combination of the midpoint scheme and the upwind scheme involving the weight parameters. The weight parameters enable the method to switch automatically from the midpoint scheme to the upwind scheme as the nodal points start moving from the inner region to the outer region. The nonuniform mesh in particular the adaptive grid is constructed using the idea of equidistributing a positive monitor function involving the solution gradient. The method is shown to be second order convergent with respect to the small parameters. Numerical experiments are presented to show the robustness of the proposed scheme and indicate that the estimate is optimal.  相似文献   

3.
Collocation with quadratic C 1-splines for a singularly perturbed reaction-diffusion problem in one dimension is studied. A modified Shishkin mesh is used to resolve the layers. The resulting method is shown to be almost second order accurate in the maximum norm, uniformly in the perturbation parameter. Furthermore, a posteriori error bounds are derived for the collocation method on arbitrary meshes. These bounds are used to drive an adaptive mesh moving algorithm. Numerical results are presented.  相似文献   

4.
This study deals with the singularly perturbed initial value problem for a quasilinear first-order delay differential equation. A numerical method is generated on a grid that is constructed adaptively from a knowledge of the exact solution, which involves appropriate piecewise-uniform mesh on each time subinterval. An error analysis shows that the method is first order convergent except for a logarithmic factor, in the discrete maximum norm, independently of the perturbation parameter. The parameter uniform convergence is confirmed by numerical computations.  相似文献   

5.
A singularly perturbed semilinear reaction-diffusion problem in the unit cube, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio condition is imposed. This result is obtained by combining (i) sharp bounds on the Green’s function of the continuous differential operator in the Sobolev W 1,1 and W 2,1 norms and (ii) a special representation of the residual in terms of an arbitrary current mesh and the current computed solution. Numerical results on a priori chosen meshes are presented that support our theoretical estimate.  相似文献   

6.
In this paper, a numerical method named as Initial Value Technique (IVT) is suggested to solve the singularly perturbed boundary value problem for the second order ordinary differential equations of convection–diffusion type with a delay (negative shift). In this technique, the original problem of solving the second order equation is reduced to solving two first order differential equations, one of which is singularly perturbed without delay and other one is regular with a delay term. The singularly perturbed problem is solved by the second order hybrid finite difference scheme, whereas the delay problem is solved by the fourth order Runge–Kutta method with Hermite interpolation. An error estimate is derived by using the supremum norm. Numerical results are provided to illustrate the theoretical results.  相似文献   

7.
A robust numerical method for a singularly perturbed secondorder ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.  相似文献   

8.
This work deals with a singularly perturbed initial value problem for a quasi-linear second-order delay differential equation. An exponentially fitted difference scheme is constructed, in an equidistant mesh, which gives first-order uniform convergence in the discrete maximum norm. Numerical results are also presented.  相似文献   

9.
A singularly perturbed semilinear two-point boundary-value problemis discretized on arbitrary non-uniform meshes. We present second-ordermaximum norm a posteriori error estimates that hold true uniformlyin the small parameter. Their application to monitor-functionequidistribution and a posteriori mesh refinement are discussed.Numerical results are presented that support our theoreticalestimates.  相似文献   

10.
We describe an adaptive mesh refinement finite element method-of-lines procedure for solving one-dimensional parabolic partial differential equations. Solutions are calculated using Galerkin's method with a piecewise hierarchical polynomial basis in space and singly implicit Runge-Kutta (SIRK) methods in time. A modified SIRK formulation eliminates a linear systems solution that is required by the traditional SIRK formulation and leads to a new reduced-order interpolation formula. Stability and temporal error estimation techniques allow acceptance of approximate solutions at intermediate stages, yielding increased efficiency when solving partial differential equations. A priori energy estimates of the local discretization error are obtained for a nonlinear scalar problem. A posteriori estimates of local spatial discretization errors, obtained by order variation, are used with the a priori error estimates to control the adaptive mesh refinement strategy. Computational results suggest convergence of the a posteriori error estimate to the exact discretization error and verify the utility of the adaptive technique.This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant Number AFOSR-90-0194; the U.S. Army Research Office under Contract Number DAAL 03-91-G-0215; by the National Science Foundation under Grant Number CDA-8805910; and by a grant from the Committee on Research, Tulane University.  相似文献   

11.
This work is concerned with asymptotic properties of solutions to forward equations for singularly perturbed Markov chains with two small parameters. It is motivated by the model of a cost-minimizing firm involving production planning and capacity expansion and a two-level hierarchical decomposition. Our effort focuses on obtaining asymptotic expansions of the solutions to the forward equation. Different from previous work on singularly perturbed Markov chains, the inner expansion terms are constructed by solving certain partial differential equations. The methods of undetermined coefficients are used. The error bound is obtained.  相似文献   

12.
This paper is devoted to the numerical study of the boundary value problems for nonlinear singularly perturbed differential-difference equations with small delay. Quasilinearization process is used to linearize the nonlinear differential equation. After applying the quasilinearization process to the nonlinear problem, a sequence of linearized problems is obtained. To obtain parameter-uniform convergence, a piecewise-uniform mesh is used, which is dense in the boundary layer region and coarse in the outer region. The parameter-uniform convergence analysis of the method has been discussed. The method has shown to have almost second-order parameter-uniform convergence. The effect of small shift on the boundary layer(s) has also been discussed. To demonstrate the performance of the proposed scheme two examples have been carried out. The maximum absolute errors and uniform rates of convergence have been presented in the form of the tables.  相似文献   

13.
In this paper, we describe a numerical method based on fitted operator finite difference scheme for the boundary value problems for singularly perturbed delay differential equations with turning point and mixed shifts. Similar boundary value problems are encountered while simulating several real life processes for instance, first exit time problem in the modelling of neuronal variability. A rigorous analysis is carried out to obtain priori estimates on the solution and its derivatives for the considered problem. In the development of numerical methods for constructing an approximation to the solution of the problem, a special type of mesh is generated to tackle the delay term along with the turning point. Then, to develop robust numerical scheme and deal with the singularity because of the small parameter multiplying the highest order derivative term, an exponential fitting parameter is used. Several numerical examples are presented to support the theory developed in the paper.  相似文献   

14.
A direct application of the reproducing kernel method presented in the previous works cannot yield accurate approximate solutions for singularly perturbed delay differential equations. In this letter, we construct a new numerical method called piecewise reproducing kernel method for singularly perturbed delay initial value problems. Numerical results show that the present method does not share the drawback of standard reproducing kernel method and is an effective method for the considered singularly perturbed delay initial value problems.  相似文献   

15.
In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.  相似文献   

16.
Two types of singularly perturbed, linear partial differential equations are considered, namely time dependent convection-diffusion problems and a two-dimensional elliptic equation having a first order unperturbed operator. Finite element approximations are constructed via modifications of classical methods of lines. The main purpose of the present work is to establish a-posteriori estimates for the error between the solutions of the finite element methods and the boundary value problems arising from the line methods. The different types of equations, parabolic and elliptic ones, and distinct directions of the lines in the elliptic case require different techniques in order to derive estimates of the desired form. These realistic, local a-posteriori error estimates may be used as a basis for adaptive computations refining the mesh automatically on every discrete line.  相似文献   

17.
In this paper, a numerical method based on finite difference scheme and Shishkin mesh for singularly perturbed two second order weakly coupled system of ordinary differential equations with discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.  相似文献   

18.
The authors establish the existence and stability of standing wave solutions of a nonlinear singularly perturbed systemof integral differential equations and a nonlinear scalar integral differential equation. It will be shown that there exist six standing wave solutions (u(x,t),w(x,t))=(U(x),W(x)) to the nonlinear singularly perturbed system of integral differential equations. Similarly, there exist six standing wave solutions u(x,t)=U(x) to the nonlinear scalar integral differential equation. The main idea to establish the stability is to construct Evans functions corresponding to several associated eigenvalue problems.  相似文献   

19.
We propose a hybrid numerical scheme to discretize a class of singularly perturbed parabolic reaction–diffusion problems with robin-boundary conditions on an equidistributed grid. The hybrid difference scheme is developed by using a modified backward difference scheme in time, a combination of the cubic spline and exponential spline difference scheme in space. The proposed scheme uses a cubic spline difference scheme for the discretization of robin-boundary conditions. For the time discretization of the problem, we use the standard uniform mesh while a layer adapted equidistributed grid is generated for the spatial discretization. By equidistributing a curvature-based monitor function, the spatial adaptive grid is able to capture the presence of parabolic boundary layers without using any prior information about the solution. Parameter uniform error estimates are derived to illustrate an optimal convergence of first-order in time and second-order in space for the proposed discretization. The accuracy of the proposed scheme is confirmed by the numerical experiments that underpin the theoretical analysis.  相似文献   

20.
In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号