首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we discuss the mixed discontinuous Galerkin (DG) finite element approximation to linear parabolic optimal control problems. For the state variables and the co-state variables, the discontinuous finite element method is used for the time discretization and the Raviart-Thomas mixed finite element method is used for the space discretization. We do not discretize the space of admissible control but implicitly utilize the relation between co-state and control for the discretization of the control. We derive a priori error estimates for the lowest order mixed DG finite element approximation. Moveover, for the element of arbitrary order in space and time, we derive a posteriori $L^2(0, T ;L^2(Ω))$ error estimates for the scalar functions, assuming that only the underlying mesh is static. Finally, we present an example to confirm the theoretical result on a priori error estimates.  相似文献   

2.
We derive two optimal a posteriori error estimators for an implicit fully discrete approximation to the solutions of linear integro‐differential equations of the parabolic type. A continuous, piecewise linear finite element space is used for the space discretization and the time discretization is based on an implicit backward Euler method. The a posteriori error indicator corresponding to space discretization is derived using the anisotropic interpolation estimates in conjunction with a Zienkiewicz‐Zhu error estimator to approach the error gradient. The error due to time discretization is derived using continuous, piecewise linear polynomial in time. We use the linear approximation of the Volterra integral term to estimate the quadrature error in the second estimator. Numerical experiments are performed on the isotropic mesh to validate the derived results.© 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1309–1330, 2016  相似文献   

3.
In this paper we analyze a characteristic finite element approximation of convex optimal control problems governed by linear convection-dominated diffusion equations with pointwise inequality constraints on the control variable, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by either piecewise constant functions or piecewise linear discontinuous functions. A priori error estimates are derived for the state, co-state and the control. Numerical examples are given to show the efficiency of the characteristic finite element method.  相似文献   

4.
In this paper, a priori error estimates are derived for the mixed finite element discretization of optimal control problems governed by fourth order elliptic partial differential equations. The state and co-state are discretized by Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. The error estimates derived for the state variable as well as those for the control variable seem to be new. We illustrate with a numerical example to confirm our theoretical results.  相似文献   

5.
The main focus of this article is on the development of a posteriori error estimates for an optimal control problem of laser surface hardening of steel, governed by a dynamical system consisting of a semi-linear parabolic equation and an ordinary differential equation. A posteriori error estimators are developed for the variables representing temperature, formation of austenite, and laser energy using residual method when a continuous piecewise linear discretization has been used for the finite element approximation of space variables and a discontinuous Galerkin method has been used for time and control discretizations. The error indicators are used in the implementation and numerical results are obtained.  相似文献   

6.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

7.
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. We derive the superconvergence properties of finite element solutions. By using the superconvergence results, we obtain recovery type a posteriori error estimates. Some numerical examples are presented to verify the theoretical results.  相似文献   

8.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

9.
In this paper, we study the numerical methods for optimal control problems governed by elliptic PDEs with pointwise observations of the state. The first order optimality conditions as well as regularities of the solutions are derived. The optimal control and adjoint state have low regularities due to the pointwise observations. For the finite dimensional approximation, we use the standard conforming piecewise linear finite elements to approximate the state and adjoint state variables, whereas variational discretization is applied to the discretization of the control. A priori and a posteriori error estimates for the optimal control, the state and adjoint state are obtained. Numerical experiments are also provided to confirm our theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we investigate the superconvergence of fully discrete splitting positive definite mixed finite element (MFE) methods for parabolic optimal control problems. For the space discretization, the state and co-state are approximated by the lowest order Raviart–Thomas MFE spaces and the control variable is approximated by piecewise constant functions. The time discretization of the state and co-state are based on finite difference methods. We derive the superconvergence between the projections of exact solutions and numerical solutions or the exact solutions and postprocessing numerical solutions for the control, state and co-state. A numerical example is provided to validate the theoretical results.  相似文献   

11.
In this article, we shall give a brief review on the fully discrete mixed finite element method for general optimal control problems governed by parabolic equations. The state and the co-state are approximated by the lowest order Raviart–Thomas mixed finite element spaces and the control is approximated by piecewise constant elements. Furthermore, we derive a posteriori error estimates for the finite element approximation solutions of optimal control problems. Some numerical examples are given to demonstrate our theoretical results.  相似文献   

12.
1. IntroductionIn the numerical approximation of PDE, it is often very importals to detect regionswhere the accuracy of the numerical solution is degraded by local singularities of the solutionof the continuous problem such as the singularity near the re-entrant corller. An obviousremedy is to refine the discretization in the critical regions, i.e., to place more gridpointswhere the solution is less regular. The question is how to identify these regions automdticallyand how to determine a goo…  相似文献   

13.
We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.  相似文献   

14.
This article discusses a priori and a posteriori error estimates of discontinuous Galerkin finite element method for optimal control problem governed by the transport equation. We use variational discretization concept to discretize the control variable and discontinuous piecewise linear finite elements to approximate the state and costate variable. Based on the error estimates of discontinuous Galerkin finite element method for the transport equation, we get a priori and a posteriori error estimates for the transport equation optimal control problem. Finally, two numerical experiments are carried out to confirm the theoretical analysis.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1493–1512, 2017  相似文献   

15.
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.  相似文献   

16.
Two explicit error representation formulas are derived for degenerate parabolic PDEs, which are based on evaluating a parabolic residual in negative norms. The resulting upper bounds are valid for any numerical method, and rely on regularity properties of solutions of a dual parabolic problem in nondivergence form with vanishing diffusion coefficient. They are applied to a practical space-time discretization consisting of piecewise linear finite elements over highly graded unstructured meshes, and backward finite differences with varying time-steps. Two rigorous a posteriori error estimates are derived for this scheme, and used in designing an efficient adaptive algorithm, which equidistributes space and time discretization errors via refinement/coarsening. A simulation finally compares the behavior of the rigorous a posteriori error estimators with a heuristic approach, and hints at the potentials and reliability of the proposed method.

  相似文献   


17.
In this paper, gradient recovery type a posteriori error estimators of virtual element discretization are derived for a simplified friction problem, which is a typical elliptic variational inequality of the second kind. Both the reliability and the efficiency of the error estimators are proved. In addition, one numerical example is presented to show the efficiency of the adaptive VEM based on the derived error estimators.  相似文献   

18.
In this paper, we investigate a posteriori error estimates of amixed finite elementmethod for elliptic optimal control problems with an integral constraint. The gradient for ourmethod belongs to the square integrable space instead of the classical H(div; Ω) space. The state and co-state are approximated by the P 0 2 -P1 (velocity–pressure) pair and the control variable is approximated by piecewise constant functions. Using duality argument method and energy method, we derive the residual a posteriori error estimates for all variables.  相似文献   

19.
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.  相似文献   

20.
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive $L^∞$- and $H^{-1}$-error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号