首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, we study, from the numerical point of view, a type III thermoelastic model with double porosity. The thermomechanical problem is written as a linear system composed of hyperbolic partial differential equations for the displacements and the two porosities, and a parabolic partial differential equation for the thermal displacement. An existence and uniqueness result is recalled. Then, we perform its a priori error numerical analysis approximating the resulting variational problem by using the finite element method and the implicit Euler scheme. The linear convergence of the algorithm is derived under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the approximations and the dependence of the solution on a coupling coefficient.  相似文献   

2.
In this paper, we numerically analyse a phase-lag model with two temperatures which arises in the heat conduction theory. The model is written as a linear partial differential equation of third order in time. The variational formulation, written in terms of the thermal acceleration, leads to a linear variational equation, for which we recall an existence and uniqueness result and an energy decay property. Then, using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives, fully discrete approximations are introduced. A discrete stability property is proved, and a priori error estimates are obtained, from which the linear convergence of the approximation is derived. Finally, some one-dimensional numerical simulations are described to demonstrate the accuracy of the approximation and the behaviour of the solution.  相似文献   

3.
This work is concerned with the study of a one-dimensional dynamic contact problem arising in thermoviscoelasticity with two temperatures. The existence and uniqueness of a solution to the continuous problem is established using the Faedo–Galerkin method. A finite element approximation is proposed, a convergence result given and some numerical simulations described.  相似文献   

4.
In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical results by numerical examples.  相似文献   

5.
We study in this paper the finite element approximations to elliptic optimal control problems with boundary observations. The main feature of this kind of optimal control problems is that the observations or measurements are the outward normal derivatives of the state variable on the boundary, this reduces the regularity of solutions to the optimal control problems. We propose two kinds of finite element methods: the standard FEM and the mixed FEM, to efficiently approximate the underlying optimal control problems. For both cases we derive a priori error estimates for problems posed on polygonal domains. Some numerical experiments are carried out at the end of the paper to support our theoretical findings.  相似文献   

6.
In this paper we revisit a quasi-static contact problem of a thermoviscoelastic beam between two rigid obstacles which was recently studied in [1]. The variational problem leads to a coupled system, composed of an elliptic variational inequality for the vertical displacement and a linear variational equation for the temperature field. Then, its numerical resolution is considered, based on the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. Error estimates are proved from which, under adequate regularity conditions, the linear convergence is derived. Finally, some numerical simulations are presented to show the accuracy of the algorithm and the behavior of the solution.  相似文献   

7.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   

8.
《偏微分方程通讯》2013,38(9-10):1641-1660
Abstract

We study a class of linear weakly hyperbolic operators with anisotropic degeneracy on their characteristic manifold and we give sufficient conditions for the well-posedness of the related Cauchy problem.  相似文献   

9.
双重介质分形油藏渗流问题   总被引:4,自引:0,他引:4  
将油井有效半径引入双重介质分形油藏渗流问题的内边界之中,从而建立了双重介质分形油藏的一种渗流模型,并在考虑了井筒储集和表皮效应的情况求得了外边界为无限大、有界封闭和有界定压三种情况下双重介质分形油藏压力分布的精确解析表达式,利用拉氏数值反演Stehfest方法分析了双重介质分形油藏压力动态特征,讨论了各种参数对压力动态的影响。  相似文献   

10.
We investigate the asymptotic profile to the Cauchy problem for a non‐linear dissipative evolution system with conservational form (1) provided that the initial data are small, where constants α, ν are positive satisfying ν2<4α(1 ? α), α<1. In (J. Phys. A 2005; 38 :10955–10969), the global existence and optimal decay rates of the solution to this problem have been obtained. The aim of this paper is to apply the heat kernel to examine more precise behaviour of the solution by finding out the asymptotic profile. Precisely speaking, we show that, when time t → ∞ the solution and solution in the Lp sense, where G(t, x) denotes the heat kernel and is determined by the initial data and the solution to a reformulated problem obtained in Section 3, β is related to ?+ and ?? which are determined by (41) in Section 4. The numerical simulation is presented in the end. The motivation of this work thanks to Nishihara (Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity. Z. Angew Math Phys 2006; 57 : 604–614). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, a contact problem between an elastic body and a deformable obstacle is numerically studied. The bone remodeling of the material is also taken into account in the model and the contact is modeled using the normal compliance contact condition. The variational problem is written as a nonlinear variational equation for the displacement field, coupled with a first-order ordinary differential equation to describe the physiological process of bone remodeling. An existence and uniqueness result of weak solutions is stated. Then, fully discrete approximations are introduced based on the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are obtained, from which the linear convergence of the algorithm is derived under suitable regularity conditions. Finally, some 2D numerical results are presented to demonstrate the behavior of the solution.  相似文献   

12.
This paper is concerned with solving the Cauchy problem for an elliptic equation by minimizing an energy-like error functional and by taking into account noisy Cauchy data. After giving some fundamental results, numerical convergence analysis of the energy-like minimization method is carried out and leads to adapted stopping criteria for the minimization process depending on the noise rate. Numerical examples involving smooth and singular data are presented.  相似文献   

13.
14.
In this paper we study the residual type a posteriori error estimates for general elliptic (not necessarily symmetric) eigenvalue problems. We present estimates for approximations of semisimple eigenvalues and associated eigenvectors. In particular, we obtain the following new results: 1) An error representation formula which we use to reduce the analysis of the eigenvalue problem to the analysis of the associated source problem; 2) A local lower bound for the error of an approximate finite element eigenfunction in a neighborhood of a given mesh element T.  相似文献   

15.
16.
In this work, some numerical methods are proposed to solve a problem which models the joint utility of starting at optimal time an industrial process that provides some benefits but also implies some irreversible effects on the environment. The mathematical model is posed in terms of an obstacle problem associated to an elliptic equation on an unbounded domain. First, following Díaz and Faghloumi [5], an equivalent formulation on a bounded domain is proposed by means of adequate changes of variables and unknown. Next, projected Gauss-Seidel and Lions-Mercier type algorithms to solve the finite elements discretized problem are proposed; the latter is combined with multigrid techniques and adaptive refinement. The algorithms efficiency is first illustrated by some numerical tests on examples with known analytical solution or theoretically stated properties. Finally, some more realistic examples are presented for which there are not known properties of the solution.  相似文献   

17.
In this work, we analyze a non-clamped dynamic viscoelastic contact problem involving thermal effect. The friction law is described by a non-monotone relation between the tangential stress and the tangential velocity. This leads to a system of second-order inclusion for displacement and a parabolic equation for temperature. We provide a fully discrete approximation of the problem and find optimal error estimates without any smallness assumption on the data. The theoretical result is illustrated by numerical simulations.  相似文献   

18.
本文考虑了一类带扩散的捕食模型的平衡态问题.首先给出了正解的先验估计,进而,分别借助于能量方法和拓扑度理论得出了因参数的变化而引起的非常数正解的不存在性和存在性结果.  相似文献   

19.
This paper mainly concerns the numerical solution of a nonlinear parabolic double obstacle problem arising in a finite-horizon optimal investment problem with proportional transaction costs. The problem is initially posed in terms of an evolutive HJB equation with gradient constraints and the properties of the utility function allow to obtain the optimal investment solution from a nonlinear problem posed in one spatial variable. The proposed numerical methods mainly consist of a localization procedure to pose the problem on a bounded domain, a characteristics method for time discretization to deal with the large gradients of the solution, a Newton algorithm to solve the nonlinear term in the governing equation and a projected relaxation scheme to cope with the double obstacle (free boundary) feature. Moreover, piecewise linear Lagrange finite elements for spatial discretization are considered. Numerical results illustrate the performance of the set of numerical techniques by recovering all qualitative properties proved in Dai and Yi (2009) [6].  相似文献   

20.
In this paper we develop an a posteriori error analysis of a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The media are governed by the elastodynamic and acoustic equations in time-harmonic regime, respectively, the transmission conditions are given by the equilibrium of forces and the equality of the corresponding normal displacements, and the fluid is supposed to occupy an annular region surrounding the solid, so that a Robin boundary condition imitating the behavior of the Sommerfeld condition is imposed on its exterior boundary. Dual-mixed approaches are applied in both domains, and the governing equations are employed to eliminate the displacement u of the solid and the pressure $p$ of the fluid. In addition, since both transmission conditions become essential, they are enforced weakly by means of two suitable Lagrange multipliers. The unknowns of the solid and the fluid are then approximated by a conforming Galerkin scheme defined in terms of PEERS elements in the solid, Raviart-Thomas of lowest order in the fluid, and continuous piecewise linear functions on the boundary. As the main contribution of this work, we derive a reliable and efficient residual-based a posteriori error estimator for the aforedescribed coupled problem. Some numerical results confirming the properties of the estimator are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号