首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Colored, low molecular weight pI markers have been developed for isoelectric focusing (IEF) in acidic pH range. Their isoelectric points (pIs) were determined by direct measurement of the pH of the focused bands after completion of IEF on polyacrylamide gels. The practicable suitability of the proposed pI markers as pI standards for IEF was tested by applying gel IEF. The acidic pH gradient was created either by commercial synthetic carrier ampholytes or by mixture of simple buffers consisting of acids (non-ampholytes) and ampholytic buffers. By applying simple acids, it was possible to extend the acidic pH range beyond those achievable with commercial synthetic carrier ampholytes. By using an experimental arrangement without electrode electrolyte reservoirs with electrodes creating the fixed end of the gel, the strongly acidic pH gradient was stable even for prolonged focusing time.  相似文献   

2.
The genetic variants of bovine beta-lactoglobulin (beta-lg) from the "Murnau-Werdenfelser" breed were analyzed in three different isoelectric focusing (IEF) systems. While carrier ampholyte IEF with a pH gradient of 0.2 pH/cm did not resolve the new variant W from the B variant and IEF in immobobilized pH gradients (IPG) with 0.1 pH/cm only partially resolved it, adequate separation was achieved with IPG-IEF in a pH 5.25-pH 5.7 gradient, in presence of 0.8 % w/v carrier ampholytes, both over a 10 and 17 cm separation distance. Apparent isoelectric points (pI's) and genetic frequencies (f) were as follows: beta-lg A, pI = 5.370, f = 0.364; beta-lg B, pI = 5.485, f = 0.480; beta-lg W, pI = 5.492, f = 0.076; and beta-lg D, pI = 5.610, f = 0.080. The small difference of delta pI = 0.007 between beta-lg B and beta-lg W respectively, seems to originate from a "silent" substitution of neutral amino acid residues as compared to the larger delta pI's of the other genetic variants of beta-lg, which result from substitution of charged amino acids.  相似文献   

3.
Sample preparation is often necessary to separate and concentrate various compounds prior to analysis of complex samples. In this regard, isoelectric focusing (IEF) is one of the best sample preparation methods. With this approach, however, carrier ampholytes have to be introduced into the samples, which may result in matrix interferences. In this paper, a simple ampholyte-free IEF free-flow electrophoresis design was developed for the separation of proteins. beta-Lactoglobulin, hemoglobin, myoglobin and cytochrome c were selected as model analytes. The experimental design took advantage of the electrolysis-driven production of H(+) and OH(-) ions that migrated from the anode and cathode, respectively, establishing a pH gradient spanning from 2.3 to 8.9. The separation chamber was filled with silanized glass beads as a support medium. Dialysis membranes were mounted at the two sides of the separation chamber (made of glass slides) and sealed with 2% agarose gel. The separated proteins drained from the outlets of the separation chamber and could be successfully collected into small glass tubes. The focusing process was visually observed and the separation was confirmed by capillary isoelectric focusing (cIEF) with pI markers.  相似文献   

4.
Some polymorphic proteins (alpha 1-antitrypsin, orosomucoid, transferrin, group specific component, plasminogen) and enzymes (phosphoglucomutase, acid phosphatase, estrase D) were determined in bloodstain extracts by isoelectric focusing with carrier ampholytes (CA) and with immobilized pH gradients (IPGs) rehydrated with CA. IPGs yield superior results for typing of genetics markers in bloodstains since phenotypes are better distinguished and the bands are straighter and sharper in the presence of contaminants. Also, the sensitivity of IPGs with CA is similar to isoelectric focusing (IEF) with CA. A new variant, ACP*B1, found in Negroid west African populations and not found in Caucasians is described. Such a variant can only be determined by IPGs since its isoelectric point (pI 5.95) is close to that of the ACP*B (pI 6.05) variant.  相似文献   

5.
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.  相似文献   

6.
The use of low-molecular-mass color pI markers for the determination of pI values of proteins in gel isoelectric focusing (IEF) in combination with mass spectrometry is described. Different types of substituted phenols of known pI values within the mass range 250-400 were used here as pI markers. The pure, synthesized pI markers were studied by MALDI-TOF/TOF MS. Fragmentation studies of the pI markers were also performed. Only stable and well-characterized pI markers were used in this work. The selected pI markers were mixed with proteins, deposited on a gel and separated in a pH gradient. Color pI markers enable supervision of progress of the focusing process and also estimation of the position of the invisible focused bands. The separated bands of the pI markers (containing separated proteins) were excised, and the pI markers were eluted from each gel piece by water/ethanol and identified by MALDI-TOF/TOF MS. From the washed gel pieces the remaining carrier ampholytes were then washed out and proteins were in-gel digested with trypsin. The obtained peptides were measured by MALDI-TOF/TOF MS and the proteins identified via a protein database search. This procedure allows avoiding time-consuming protein staining and destaining procedures, which shortens the analysis time roughly by half. For comparison, IEF gels were stained with Coomassie Brilliant Blue R 250 and proteins in the gel bands were identified according to the standard proteomic protocol. This work has confirmed that our approach can give information about the correct pI values of particular proteins and shorten significantly the time of analysis.  相似文献   

7.
Isoelectric focusing (IEF) of metallized and demetallized preparations of concanavalin A (Con A) consisting of either intact or fragmented subunits shows different band patterns. Metallized Con A consisting of intact polypeptide chains (intact Con A) has an isoelectric point (pI) 8.35. Metallized preparations consisting of fragmented chains (fragmented Con A) show three bands with pI values 8.0, 7.8 and 7.7. Demetallized intact Con A (intact apoCon A) has a pI of 6.5, however, it undergoes pH dependent association during IEF under certain conditions, which gives rise to multiple bands. Ampholyte-mediated demetallization of intact and fragmented Con A and subsequent aggregation of the apoprotein results in multiple bands during IEF in the presence of the pH range 3 to 10 ampholytes. However, ampholytes of the pH range 7 to 9 do not demetallize the proteins and show a single band with intact Con A. The pI of intact Con A remains essentially the same in the presence of inhibitory sugar. Furthermore, different moleculars forms of Con A, including locked and unlocked conformers of intact apoCon A, and the dimeric and tetramic states of both intact Con A and intact apoCon A have been identified and their pI values determined. IEF of the lentil isoelectins, LcH-A and LcH-B, shows single bands of pI 8.5 and 9.0, respectively. However, the native lectin mixture gives rise to an additional band of pI 8.8 due to a hybrid protein formed by ampholyte-mediated subunit exchange between the isolectins.  相似文献   

8.
Zuo X  Speicher DW 《Electrophoresis》2000,21(14):3035-3047
In this study, metabolically radiolabeled Escherichia coli cell extracts were used to systematically evaluate protein recoveries at each step of two-dimensional (2-D) electrophoresis and using different sample application methods. Sample application using sample cups resulted in better protein recovery compared with sample loading by rehydration when the Multiphor system was used. At least 50% or more of an E. coli extract was lost when high protein amounts (500 microg) were loaded by rehydration using this system, which employs separate holders for rehydration and isoelectric focusing (IEF). In contrast, when the IPGphor system was used, rehydration sample loading consistently yielded the highest overall protein recoveries. These improved protein recoveries were due to integration of rehydration and electrophoretic separation in a single unit. Even at high protein loads (500 microg), less than 15-20% of the proteins were lost when proteins were loaded by rehydration using sample buffer containing 2% carrier ampholytes in the ceramic immobilized pH gradient (IPG) strip holders used for both rehydration and IEF. Regardless of the loading conditions used, carrier ampholytes in the sample buffer increased protein recoveries. Use of thiourea did not significantly affect protein recoveries but did improve protein resolution in 2-D gels as expected. In summary, these results show the best protein recoveries are obtained for all protein loads when samples are applied to IPG strips during rehydration using a single device for both rehydration and IEF. In contrast, the poorest recoveries are obtained when rehydration and IEF are performed in separate devices, and losses increase dramatically with increasing protein loads using this approach.  相似文献   

9.
Lalwani S  Tutu E  Vigh G 《Electrophoresis》2005,26(13):2503-2510
Ampholytes with close pK(a) values (i.e., good carrier ampholytes (CAs)) are needed as buffers in pH-biased isoelectric trapping (IET) separations. The syntheses of two families of such good CAs were reported recently. Members of the family of diamino sulfate ampholytes (first series) had pI values in the 5.7 < pI < 9.0 range. Members of the family of quaternary ammonium dicarboxylic acid ampholytes (second series) had pI values in the pI < 4.3 range. To further characterize the diamino sulfate ampholytes, their effective mobilities were measured by indirect UV-absorbance detection capillary electrophoresis in a series of background electrolytes (BGEs) with different pH values. The pK(a) and limiting ionic mobility values of the CAs were obtained by fitting these mobility values, as a function of the pH and the ionic strength of the BGEs, to the theoretical mobility expression. These diamino sulfates complete the list of CAs suitable for IET separations.  相似文献   

10.
Sixteen peptides (trimers to hexamers) were designed for use as a set of pI markers for capillary isoelectric focusing (CIEF). Each peptide contains one tryptophan residue for detection by UV absorption and other amino acid residues having ionic side chains, which are responsible for focusing to its pI. The pIs of these peptides were determined by slab-gel IEF using commercial carrier ampholytes. The focused peptides in the gel were detected by absorption measurement at 280 nm using a scanning densitometer and the pH gradient was determined by measuring the pH of the gel using an oxidized metal membrane electrode. The pI values of the peptides ranged from 3.38 to 10.17. The obtained values agreed well with the predicted ones, which were calculated based on amino acid compositions, with root mean square differences of 0.15 pH unit. The peptides were detected at 280 nm as very sharp peaks when separated by CIEF. The pI values of some standard proteins were redetermined by CIEF by using this set of peptide pI markers and the values agreed closely with those reported previously. The sharp focusing, stability, high purity and high solubility of these synthetic pI markers should facilitate the profiling of a pH gradient in a capillary and the determination of the pI values of proteins.  相似文献   

11.
A method for the characterization of proteins separated by isoelectric focusing in carrier ampholytes (CA-IEF) or immobilized pH gradient (IPG) gels by in-gel digestion and mass spectrometry is described. Proteins are detected by an improved imidazole-Sodium dodecyl sulfate (SDS)-zinc staining adapted for IEF and IPG gels. Sensitivity is close to that of mass spectrometry-compatible silver staining, but simpler and faster. Proteins were digested in imidazole-SDS-zinc stained CA-IEF and IPG gels in the presence of a zinc-chelating agent. Mass spectra were clearly interpretable as carrier ampholytes which were efficiently removed before digestion; high-sequence coverage that allowed isoform characterization was obtained by analyzing both the aqueous and the organic phase extracts.  相似文献   

12.
A protocol is described for monitoring the heterogeneity of end products of organic syntheses yielding amphoteric molecules containing two or more amino groups. This protocol was found to be a valuable aid in synthesis of carrier ampholytes for specific isoelectric focusing applications. This method does not depend on the ampholytes themselves to dictate the conditions under which they are analyzed. Carrier ampholytes have been found previously to be insoluble in picric acid and the insolubility property was not dependent upon the pI of individual ampholyte species. This insolubility property was exploited in the protocol. Immobilized pH gradients were used to focus the carrier ampholytes. Ampholytes were then visualized in situ by picric acid precipitation. The data shows that the protocol is useful for analyzing the results of chemical manipulations for enhancing the resolution of carrier ampholytes. A direct relationship was shown between carrier ampholyte heterogeneity as demonstrated by this protocol and the resolution of complex protein mixtures in isoelectric focusing gels. Picric acid formed visible precipitates with a variety of organic compounds which contained more than one amino group.  相似文献   

13.
Fleisher HC  Vigh G 《Electrophoresis》2005,26(13):2511-2519
Diaminocarboxylic acid carrier ampholytes, such as L-histidine, 2,3-diaminopropionic acid, L-ornithine, and L-lysine, were reacted with glycerol-1,3-diglycidyl ether (GDGE) and poly(vinyl alcohol) (PVA) in the presence of sodium hydroxide to produce hydrolytically and mechanically stable hydrogels, supported on a PVA substrate, for use as buffering membranes in isoelectric trapping (IET) separations. The pH values of the DACAPVA membranes were determined with the help of small-molecule pI markers and proteins and were found to be in the 6 < pH < 8.5 range. The membranes were successfully used to isoelectrically trap small ampholytes, desalt ampholyte solutions in IET mode, and effect the binary separation of chicken egg white proteins.  相似文献   

14.
Das C  Zhang J  Denslow ND  Fan ZH 《Lab on a chip》2007,7(12):1806-1812
Two-dimensional (2D) protein separation is achieved in a plastic microfluidic device by integrating isoelectric focusing (IEF) with multi-channel polyacrylamide gel electrophoresis (PAGE). IEF (the first dimension) is carried out in a 15 mm-long channel while PAGE (the second dimension) is in 29 parallel channels of 65 mm length that are orthogonal to the IEF channel. An array of microfluidic pseudo-valves is created for introducing different separation media, without cross-contamination, in both dimensions; it also allows transfer of proteins from the first to the second dimension. Fabrication of pseudo-valves is achieved by photo-initiated, in situ gel polymerization; acrylamide and methylenebisacrylamide monomers are polymerized only in the PAGE channels whereas polymerization does not take place in the IEF channel where a mask is placed to block the UV light. IEF separation medium, carrier ampholytes, can then be introduced into the IEF channel. The presence of gel pseudo-valves does not affect the performance of IEF or PAGE when they are investigated separately. Detection in the device is achieved by using a laser induced fluorescence imaging system. Four fluorescently-labeled proteins with either similar pI values or close molecular weight are well separated, demonstrating the potential of the 2D electrophoresis device. The total separation time is less than 10 minutes for IEF and PAGE, an improvement of 2 orders of magnitude over the conventional 2D slab gel electrophoresis.  相似文献   

15.
Erythrocyte acid phosphatase (EAP), esterase D (ESD) and phosphoglucomutase (PGM) phenotypes among the erythrocyte enzyme types of blood groups are surveyed and a modified cellulose acetate membrane isoelectric focusing (CAM-IEF) method for their exploration is described. The phenotyping procedures are usually classified as either equilibrium or non-equilibrium IEF. Equilibrium IEF, which is based on differences in pI values, includes three methods: (i) a narrow pH range of carrier ampholytes, (ii) a relatively narrow pH range of carrier ampholytes containing chemical separators and (iii) immobilized pH gradient gels. Among the three methods, immobilized pH gradients provides a better resolution of isozymes. Conversely, the disadvantages of immobilized pH gradients include longer focusing times and complex gel preparations. Moreover, immobilized pH gradients are unsuitable for stain analysis because of the insensitivity of PGM1 detection. A hybrid IEF system and a commercial immobilized pH gradient dry plate have overcome these problems. However, EAP typing is extremely expensive and ESD typing is not well distinguished by hybrid IEF. As each method has both merits and demerits, the most suitable technique should be selected based on the kind of erythrocyte enzyme types and sample conditions. On the other hand, non-equilibrium IEF is a rapid method because isozymes are detected on the basis of their charge differences under non-equilibrium conditions. Moreover, the appropriate addition separators increases the charge difference and provides a good resolution within a shorter time. Addition of more separators produces a narrow pH range in the gel and takes a substantially longer time to reach the optimum pH range for charge difference.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Shim J  Dutta P  Ivory CF 《Electrophoresis》2008,29(5):1026-1035
The effects of mobility corrections on carrier ampholytes are studied at various ampholyte concentrations to understand protein behavior during IEF. IEF simulations are conducted in the presence of 25 biprotic carrier ampholytes within a pH range of 6-9 after applying the Onsager-Debye-Hückel correction to the carrier ampholytes. Two model proteins with ten charge states but without ionic strength corrections are allowed to focus under an electric field of 300 V/cm in a 1 cm long channel. The IEF simulation results show that higher ionic strengths (50 - 100 mM) cause significant changes in the transient movement as well as the final focused profiles of both ampholytes and proteins. The time required for a single, well-defined peak to form increases with ionic strength when Onsager corrections are applied to the carrier ampholytes. For a particular ampholyte concentration, the space-averaged conductivity does not change during the final focusing stage, but the magnitude of space averaged conductivity is different for different ampholyte concentration. The simulation results also reveal that at steady-state ionic strength profiles remain flat throughout the channel except at the locations of proteins where a significant change in ampholyte concentration is obtained.  相似文献   

17.
M Poux  J Bertrand 《Electrophoresis》1990,11(11):907-912
Free-flow isoelectric focusing was adapted to preparative scale separations and chemical engineering methods were used to describe the main mechanisms operating in the apparatus. A mixture of human serum albumin (pI 4.6) and beta-lactoglobulin (pI 5.22) was separated in pH gradients, generated with carrier ampholytes of different origin and covering the pH ranges 4-6.5, 3.5-5, 4-5.5 and 4.5-5.0. Best results were obtained in the pH 4-5.5 range. The experimental results have validated the results obtained with a numerical model.  相似文献   

18.
Jin Y  Luo G  Oka T  Manabe T 《Electrophoresis》2002,23(19):3385-3391
Synthetic UV-detectable peptide pI markers were used to estimate isoelectric point (pI) values of proteins separated by capillary isoelectric focusing (CIEF) followed by cathodic mobilization in the absence of denaturing agents. The pI calculation and quantitative analysis of purified proteins showed the feasibility of these peptides as pI markers and internal standards in CIEF separation of proteins. Estimation of pI values of major proteins in human plasma was performed using the peptide pI markers, and the values were compared with those previously obtained by gel isoelectric focusing (IEF). Sera of immunoglobulin G (IgG) myeloma patients, which showed characteristic peaks of myeloma IgG in their CIEF patterns, were also subjected to the analysis and the pI values of the myeloma proteins have been estimated.  相似文献   

19.
Isoforms of human monoclonal antibodies against the gp-41 of AIDS virus and of human recombinant superoxide dismutase have been purified to homogeneity by isoelectric focusing (IEF) in a multi-compartment electrolyser with isoelectric, immobiline membranes. This system allows the processing of large sample volumes and gram-scale protein loads and can resolve isoforms as close as 0.001 in pI difference. The purification progress was usually monitored by analytical IEF in immobilized pH gradients (IPG). Capillary zone electrophoresis (CZE) was applied to the monitoring of the content of each chamber of the electrolyser. CZE was found to be superior in terms of speed of analysis and quantification (but only by UV reading at 200-210 nm, i.e., in the region of the peptide bond) but, notwithstanding the millions of theoretical plates reported, was no match for the resolving power of IPGs, at least for protein analysis. When compared also with chromatofocusing, the resolving power decreases in the order IPG greater than CZE much greater than chromatofocusing.  相似文献   

20.
North RY  Vigh G 《Electrophoresis》2008,29(5):1077-1081
The operational pH value of a buffering membrane used in an isoelectric trapping separation is determined by installing the membrane as the separation membrane into a multicompartmental electrolyzer operated in the two-separation compartment configuration. A 3相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号