首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The photochemistry of various Roussin's red ester compounds of the general formula Fe(2)(SR)(2)(NO)(4), where R = CH(3), CH(2)CH(3), CH(2)C(6)H(5), CH(2)CH(2)OH, and CH(2)CH(2)SO(3)(-), were investigated. Continuous photolyses of these ester compounds in aerated solutions led to the release of NO with moderate quantum yields for the photodecomposition of the ester (Phi(RSE) = 0.02-0.13). Electrochemical studies using an NO electrode demonstrated that 4 mol of NO are generated for each mole of ester undergoing photodecomposition. Nanosecond flash photolysis studies of Fe(2)(SR)(2)(NO)(4) (where R = CH(2)CH(2)OH and CH(2)CH(2)SO(3)(-)) indicate that the initial photoreaction is the reversible dissociation of NO. In the absence of oxygen, the presumed intermediate, Fe(2)(SR)(2)(NO)(3), undergoes second-order reaction with NO to regenerate the parent cluster with a rate constant of k(NO) = 1.1 x 10(9) M(-1) s(-1) for R = CH(2)CH(2)OH. Under aerated conditions the intermediate reacts with oxygen to give permanent photochemistry.  相似文献   

2.
The rheological behaviour of aqueous suspensions of boehmite (AlO(OH)) modified with different Ce-salts (Ce(NO(3))(3), CeCl(3), Ce(CH(3)COO)(3) and Ce(2)(SO(4))(3)) was investigated at a fixed Ce/Al molar ratio (0.05). Freshly prepared boehmite suspensions were near-Newtonian and time-independent. A shear-sensitive thixotropic network developed when Ce-salts with monovalent anions were introduced in the nanoparticle sols. The extent of particle aggregation dramatically increased with ageing for Ce(NO(3))(3) and CeCl(3) whereas an equilibrium value was reached with Ce(CH(3)COO)(3). The addition of Ce(2)(SO(4))(3) with divalent anions involved no thixotropy but rather a sudden phase separation. The combined data set of IRTF and DRIFT spectra indicated that free NO(3)(-) anions of peptized boehmite adsorb on the nanoparticle surface by H-bond. The introduction of Ce-salts in the boehmite sol led to the coordination between Ce(3+) ions and NO(3)(-) anions adsorbed on boehmite i.e. to [Ce(NO(3))(4)(H(2)O)(x)](-) complex. Such coordination led to a thixotropic behaviour which was lower with Ce(NO(3))(3) compared to CeCl(3) and Ce(CH(3)COO)(3). In contrast, Ce(2)(SO(4))(3) formed insoluble complexes with dissolved aluminium species. The formation of H-bonded surface nitrate complexes was found to play a decisive role on the particle-particle interactions and consequently on the rheological behaviour of the sols.  相似文献   

3.
Reactions of lead cluster cations and anions with acetone have been studied using a homemade reflectron time-of-flight mass spectrometer. Association with acetone to form Pb(k)(CH(3)COCH(3))(n)(+), high-energy pathway reactions forming Pb(k)CH(3)(+), and intraheterocluster reaction of Pb(k)(CH(3)COCH(3))(n+1)(+) to give Pb(k)CH(3)(CH(3)COCH(3))(n)(+) were the main reaction pathways for lead cluster cations with acetone. Decomposition of acetone by Pb(k)(-) to give Pb(k)C(m)(-) ions and their further association with acetone, Pb(k)C(m)(CH(3)COCH(3))(-), were the dominant reactions of lead cluster anions with acetone. Pb(7)(-), Pb(10)(-), and Pb(k)C(5)(-) were 'magic numbers' with special structural stabilityin Pb(k)(-) and Pb(k)C(m)(-), respectively. In addition, Pb(k)H(-), CH(2)COCH(3)(CH(3)COCH(3))(n)(-) and Pb(k)CH(2)COCH(3)(CH(3)COCH(3))(n)(-) were also observed in the reaction of lead cluster anions. Some reaction mechanisms are proposed for these reactions. To investigate the isotope effect for the reaction of lead cluster cations and anions with acetone and to verify the structural assignments of the observed ions, reactions of lead cluster cations and anions with deuterated acetone-d(6) were also performed.  相似文献   

4.
The kinetics of the CH2I + NO2, CH2Br + NO2, and CHBrCl + NO2 reactions have been studied at temperatures between 220 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time-resolved measurements to obtain reaction rate coefficients under pseudo-first-order conditions. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (2-6 Torr) and are found to depend on temperature as follows: k(CH2I + NO2) = (2.18 +/- 0.07) x 10(-11) (T / 300 K)(-1.45) (+/- 0.22) cm3 molecule(-1) s(-1) (220-363 K), k(CH2Br + NO2) = (1.76 +/- 0.03) x 10(-11) (T/300 K)(-0.86) (+/- 0.09) cm3 molecule(-1) s(-1) (221-363 K), and k(CHBrCl + NO2) = (8.81 +/- 0.28) x 10(-12) (T/300 K)(-1.55) (+/- 0.34) cm3 molecule(-1) s(-1) (267-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the CH2I + NO2 and CH2Br + NO2 reactions, the observed product is formaldehyde. For the CHBrCl + NO2 reaction, the product observed is CHClO. In addition, I atom and iodonitromethane (CH2INO2) or iodomethyl nitrite (CH2IONO) formations have been detected for the CH2I + NO2 reaction.  相似文献   

5.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

6.
A new terphenyl based chemosensor 3 has been designed and synthesized. The binding behavior of 3 and its chemosensing ensemble 3-Hg toward various anions (F(-), Cl(-), Br(-), I(-), HSO(4)(-), H(2)PO(4)(-), CH(3)COO(-), NO(3)(-), N(3)(-), SO(4)(2-), SO(3)(2-), and Cr(2)O(7)(2-)) has been investigated by UV-Vis, fluorescence and NMR spectroscopy. Compound 3 shows a sensitivity for both F(-) and CH(3)COO(-) ions among various anions tested, whereas the ensemble 3-Hg shows a better selectivity for CH(3)COO(-) ions. The ensemble is utilized for CH(3)COO(-) recognition in a blood plasma like system.  相似文献   

7.
Reactions of ozone with Br(-), SO(3)(2-), HSO(3)(-), I(-), and NO(2)(-), studied by stopped-flow and pulsed-accelerated-flow techniques, are first order in the concentration of O(3)(aq) and first order in the concentration of each anion. The rate constants increase by a factor of 5 x 10(6) as the nucleophilicities of the anions increase from Br(-) to SO(3)(2-). Ozone adducts with the nucleophiles are proposed as steady-state intermediates prior to oxygen atom transfer with release of O(2). Ab initio calculations show possible structures for the intermediates. The reaction between Br(-) and O(3) is accelerated by H(+) but exhibits a kinetic saturation effect as the acidity increases. The kinetics indicate formation of BrOOO(-) as a steady-state intermediate with an acid-assisted step to give BrOH and O(2). Temperature dependencies of the reactions of Br(-) and HSO(3)(-) with O(3) in acidic solutions are determined from 1 to 25 degrees C. These kinetics are important in studies of annual ozone depletion in the Arctic troposphere at polar sunrise.  相似文献   

8.
An oxidation of cluster anion [Re(12)CS(17)(CN)(6)](6-) by H(2)O(2) in water has been investigated. It was shown that selective two-step oxidation of bridging μ(2)-S-ligands in trigonal prismatic unit {Re(3)(μ(6)-C)(μ(2)-S)(3)Re(3)} takes place. The first stage runs rapidly, whereas the speed of the second stage depends on intensity of ultraviolet irradiation of the reaction mixture. Each stage of the reaction is accompanied by a change in the solution's color. In the first stage of the oxidation, the cluster anion [Re(12)CS(14)(SO(2))(3)(CN)(6)](6-) is produced, in which all bridging S-ligands are turned into bridging SO(2)-ligands. The second stage of the oxidation leads to formation of the anion [Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(6)](6-), in which one of the SO(2)-ligands underwent further oxidation forming the bridging SO(3)-ligand. Seven compounds containing these anions were synthesized and characterized by a set of different methods, elemental analyses, IR and UV/vis spectroscopy, and quantum-chemical calculations. Structures of some compounds based on similar cluster anions, [Cu(NH(3))(5)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·9.5H(2)O, [Ni(NH(3))(6)](3)[Re(12)CS(14)(SO(2))(3)(CN)(6)]·4H(2)O, and [Cu(NH(3))(5)](2.6)[Re(12)CS(14)(SO(2))(3)(CN)(6)](0.6)[{Re(12)CS(14)(SO(2))(2)(SO(3))(CN)(5)(μ-CN)}{Cu(NH(3))(4)}](0.4)·5H(2)O, were investigated by X-ray analysis of single crystals.  相似文献   

9.
Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.  相似文献   

10.
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction.  相似文献   

11.
Seven new silver(I) complexes of the formula [Ag2(L)2(CF3SO3)2] (1), [Ag2(L)2(CH3SO3)2] (2) [Ag2(L)2](BF4)2 (3), [Ag3(L)2(NO3)2]NO3.5H2O (4), [Ag2(L)(NO3)2].CH3OH (5), [Ag2(L)2](ClO4)2 (6) and [Ag3(L)2(CH3CN)3](ClO4)3 (7) have been synthesized by reactions of 1,3,5-tris(2-oxazolinyl)benzene (L) with varied silver(I) salts under different conditions. The influences of counter anions and reaction conditions on the structure of the complexes are discussed. Three complexes , 1, 2 and 3 with two kinds of different 1D chain structures were obtained under the same synthetic conditions by using different silver(I) salts, and the ligand L was found to adopt bis-monodentate (1 and 2) and tris-monodentate (3) coordination modes respectively. On the other hand, by using the same silver(I) nitrate or silver(I) perchlorate but different reaction solvents, 4 and 5 or 6 and 7 were isolated respectively. Complexes 4and 5 have different 1D chain structures, and 6 is isostructural with . However, 7 is a tri-nuclear, propeller-shaped M3L2 supramolecular capsule in which L adopts a cis,cis,cis-conformation, while the ligand L in 3-6 has cis,trans,trans-conformation. The results revealed that the nature of the counter anions, such as their size, coordination ability and coordination mode, and the reaction conditions all have great impact on the structure of the complexes. The complexes were also characterized by electrospray mass spectrometry. Furthermore, complex 7 exhibited modest second-harmonic-generation (SHG) efficiency.  相似文献   

12.
Complex [Ag(tpba)N(3)] (1) was obtained by reaction of novel tripodal ligand N,N',N"-tris(pyrid-3-ylmethyl)-1,3,5-benzenetricarboxamide (TPBA) with [Ag(NH(3))(2)]N(3). While the reactions between 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (TITMB) and silver(I) salts with different anions and solvent systems give six complexes: [Ag(3)(titmb)(2)](N(3))(3).CH(3)OH.4 H(2)O (2), [Ag(3)(titmb)(2)](CF(3)SO(3))(2)(OH).5 H(2)O (3), [Ag(3)(titmb)(2)][Ag(NO(3))(3)]NO(3).H(2)O (4), [Ag(3)(titmb)(2)(py)](NO(3))(3).H(2)O (py=pyridine) (5), [Ag(3)(titmb)(2)(py)](ClO(4))(3) (6), and [Ag(3)(titmb)(2)](ClO(4))(3).CHCl(3) (7). The structures of these complexes were determined by X-ray crystallography. The results of structural analysis of complexes 1 and 2, with the same azide anion but different ligands, revealed that 1 is a twofold interpenetrated 3D framework with interlocked cage-like moieties, while 2 is a M(3)L(2) type cage-like complex with a methanol molecule inside the cage. Entirely different structure and topology between 1 and 2 indicates that the nature of organic ligands affected the structures of assemblies greatly. While in the cases of complexes 2-7 with flexible tripodal ligand TITMB, they are all discrete M(3)L(2) type cages. The results indicate that the framework of these complexes is predominated by the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and solvents. It is interesting that there is a divalent anion [Ag(NO(3))(3)](2-) inside the cage 4 and an anion of ClO(4)(-) or NO(3)(-) spontaneously encapsulated within the cage of complexes 5, 6 and 7.  相似文献   

13.
The reaction of bromite with aqueous S(IV) is first order in both reactants and is general-acid catalyzed. The reaction half-lives vary from 5 ms (p[H+] 5.9) to 210 s (p[H+] 13.1) for 0.7 mM excess S(IV) at 25 degrees C. The proposed mechanism includes a rapid reaction (k(1) = 3.0 x 10(7) M(-1) s(-1)) between BrO(2)(-) and SO(3)(2-) to form a steady-state intermediate, (O(2)BrSO(3))(3-). General acids assist the removal of an oxide ion from (O(2)BrSO(3))(3-) to form OBrSO(3)(-), which hydrolyzes rapidly to give OBr(-) and SO(4)(2-). Subsequent fast reactions between HOBr/OBr(-) and SO(3)(2-) give Br(-) and SO(4)(2-) as final products. In contrast, the chlorite reactions with S(IV) are 5-6 orders of magnitude slower. These reactions are specific-acid, not general-acid, catalyzed. In the proposed mechanism, ClO(2)(-) and SO(3)H(-)/SO(2) react to form (OClOSO(3)H)(2)(-) and (OClOSO(2))(-) intermediates which decompose to form OCl(-) and SO(4)(2-). Subsequent fast reactions between HOCl/OCl(-) and S(IV) give Cl- and SO(4)(2-) as final products. SO(2) is 6 orders of magnitude more reactive than SO(3)H-, where k(5)(SO(2)/ClO(2)(-)) = 6.26 x 10(6) M(-1) s(-1) and k(6)(SO(3)H(-)/ClO(2)(-)) = 5.5 M(-1) s(-1). Direct reaction between ClO(2)(-) and SO(3)(2-) is not observed. The presence or absence of general-acid catalysis leads to the proposal of different connectivities for the initial reactive intermediates, where a Br-S bond forms with BrO(2)(-) and SO(3)(2-), while an O-S bond forms with ClO(2)(-) and SO(3)H-.  相似文献   

14.
The binding behavior of triphenylene based copper ensemble prepared in situ has been investigated toward various anions (F(-), Cl(-), Br(-), I(-), CH(3)COO(-), H(2)PO(4)(-), NO(3)(-), OH(-), ClO(4)(-), CN(-), CO(3)(-) and SO(4)(-)) by UV-vis and fluorescence spectroscopy. Among various anions tested, 1-Cu(2+) ensemble shows selective and sensitive response towards cyanide ions and responds to CN(-) ions even in the presence of bovine serum albumin and in blood serum milieu. Further, as practical application of compound 1, we utilized the TLC strips coated with THF solution of 1 for the solid state detection of copper and cyanide ions.  相似文献   

15.
Rate constants for the reactions of OH radicals and NO(3) radicals with diethyl methylphosphonate [DEMP, (C(2)H(5)O)(2)P(O)CH(3)], diethyl ethylphosphonate [DEEP, (C(2)H(5)O)(2)P(O)C(2)H(5)], and triethyl phosphate [TEP, (C(2)H(5)O)(3)PO] have been measured at 296 +/- 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were as follows: DEMP, 5.78 +/- 0.24; DEEP, 6.45 +/- 0.27; and TEP, 5.44 +/- 0.20. The rate constants obtained for the NO(3) radical reactions (in units of 10(-16) cm(3) molecule(-1) s(-1)) were the following: DEMP, 3.7 +/- 1.1; DEEP, 3.4 +/- 1.4; and TEP, 2.4 +/- 1.4. For the reactions of O(3) with DEMP, DEEP, and TEP, an upper limit to the rate constant of <6 x 10(-20) cm(3) molecule(-1) s(-1) was determined for each compound. Products of the reactions of OH radicals with DEMP, DEEP, and TEP were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and, for the TEP reaction, gas chromatography with flame ionization detection (GC-FID) and in situ Fourier transform infrared (FT-IR) spectroscopy. The API-MS analyses show that the reactions are analogous, with formation of one major product from each reaction: C(2)H(5)OP(O)(OH)CH(3) from DEMP, C(2)H(5)OP(O)(OH)C(2)H(5) from DEEP, and (C(2)H(5)O)(2)P(O)OH from TEP. The FT-IR and GC-FID analyses showed that the major products (and their molar yields) from the TEP reaction are (C(2)H(5)O)(2)P(O)OH (65-82%, initial), CO(2) (80 +/- 10%), and HCHO (55 +/- 5%), together with lesser yields of CH(3)CHO (11 +/- 2%), CO (11 +/- 3%), CH(3)C(O)OONO(2) (8%), organic nitrates (7%), and acetates (4%). The probable reaction mechanisms are discussed.  相似文献   

16.
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.  相似文献   

17.
利用波长为266 nm的激光光解CHBr3产生CH自由基,其与NO反应作为NCO自由基的来源.在298 K,总压2660 Pa的条件下,采用激光诱导荧光的方法,研究了NCO自由基与SO2、CS2的反应.得到了NCO自由基与SO2、CS2双分子反应速率常数分别为(1.8±0.3)×10-11和(3.1±0.4)×10-12 cm3•molecule-1•s-1.对这两个反应在B3LYP/6-31+G(d)的水平上进行理论研究的结果表明,NCO自由基与SO2、CS2的反应是加成反应,其机理是NCO自由基中的N原子攻击反应物的中心原子,得到加成产物.  相似文献   

18.
The reaction of RBiCl(2) (1) [R = 2,6-(Me(2)NCH(2))(2)C(6)H(3)] with Na(2)CO(3) or Ag(2)SO(4) (1 : 1 molar ratio) gave RBiCO(3) (2) and RBiSO(4) (3), respectively. RBi(NO(3))(2) (4) was obtained from RBiCl(2) and AgNO(3) (1 : 2 molar ratio). The ionic complex [R(2)Bi][W(CO)(5)Cl] (6) was obtained from R(2)BiCl (5) and W(CO)(5)(THF), following an unusual chlorine transfer from bismuth to tungsten. Compounds 2-4 are partially soluble in water. The molecular structures of 2·0.5CH(2)Cl(2), 3, 4·H(2)O and 6 were established by single-crystal X-ray diffraction. The carbonate 2 and the sulfate 3 exhibit a polymeric structure based on bridging oxo anions, while for the compound 4 dimer associations are formed, with both bridging and terminal nitrate anions. Dimer associations, based on weak Cl···H interactions between the cation and the anion, were found in the crystal of 6.  相似文献   

19.
A series of dinuclear triple-stranded complexes, [Fe(2)L(3)?X]X(6) [X = BF(4)(-) (1), ClO(4)(-) (2)], [Fe(2)L(3)?SO(4)](2)(SO(4))(5) (3), [Fe(2)L(3)?Br](BPh(4))(6) (4), Fe(2)L(3)(NO(3))Br(6) (5), and [Cu(2)L(3)?NO(3)](NO(3))(6) (6), which incorporate a central cavity to encapsulate different anions, have been synthesized via the self-assembly of iron(II) or copper(II) salts with the N,N'-bis[5-(2,2'-bipyridyl)methyl]imidazolium bromide (LBr) ligand. X-ray crystallographic studies (for 1-4 and 6) and elemental analyses confirmed the cagelike triple-stranded structure. The anionic guest is bound in the cage and shows remarkable influence on the outcome of the self-assembly process with regard to the configuration at the metal centers. The mesocates (with different configurations at the two metal centers) have formed in the presence of large tetrahedral anions, while helicates (with the same configuration at both metal centers) were obtained when using the relatively smaller spherical or trigonal-planar anions Br(-) or NO(3)(-).  相似文献   

20.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号