首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study reports magnitudes and the orientation of the (13)C(alpha) chemical shift anisotropy (CSA) tensors of peptides obtained using quantum chemical calculations. The dependency of the CSA tensor parameters on the energy optimization of hydrogen atom positions and hydrogen bonding effects and the use of zwitterionic peptides in the calculations are examined. Our results indicate that the energy optimization of the hydrogen atom positions in crystal structures is necessary to obtain accurate CSA tensors. The inclusion of intermolecular effects such as hydrogen bonding in the calculations provided better agreement between the calculated and experimental values; however, the use of zwitterionic peptides in calculations, with or without the inclusion of hydrogen bonding, did not improve the results. In addition, our calculated values are in good agreement with tensor values obtained from solid-state NMR experiments on glycine-containing tripeptides. In the case of peptides containing an aromatic residue, calculations on an isolated peptide yielded more accurate isotropic shift values than the calculations on extended structures of the peptide. The calculations also suggested that the presence of an aromatic ring in the extended crystal peptide structure influences the magnitude of the delta(22) which the present level of ab initio calculations are unable to reproduce.  相似文献   

2.
4-Alkoxy benzoic acids belong to an important class of thermotropic liquid crystals that are structurally simple and often used as starting materials for many novel mesogens. 4-Hexyloxybenzoic acid (HBA) is a homologue of the same series and exhibits an enantiotropic nematic phase. As this molecule could serve as an ideal model compound, high resolution (13)C NMR studies of HBA in solution, solid, and liquid crystalline phases have been undertaken. In the solid state, two-dimensional separation of undistorted powder patterns by effortless recoupling (2D SUPER) experiments have been carried out to estimate the magnitude of the components of the chemical shift anisotropy (CSA) tensor of all the aromatic carbons. These values have been used subsequently for calculating the orientational order parameters in the liquid crystalline phase. The CSA values computed by density functional theory (DFT) calculations showed good agreement with the 2D SUPER values. Additionally, (13)C-(1)H dipolar couplings in the nematic phase have been determined by separated local field (SLF) spectroscopy at various temperatures and were used for computing the order parameters, which compared well with those calculated by using the chemical shifts. It is anticipated that the CSA values determined for HBA would be useful for the assignment of carbon chemical shifts and for the study of order and dynamics of structurally similar novel mesogens in their nematic phases.  相似文献   

3.
The principal components and orientations of the chemical shift anisotropy (CSA) tensors of nearly all 13C carbonyl nuclei in a small protein have been determined in isotropic solution by a combination of three complementary cross-correlation measurements.  相似文献   

4.
5.
利用原子电性作用矢量(Atomic electro-negativity interaction vector,AEIV)和原子杂化状态指数(Atomic hybridization state index,AHSI)对萜类化合物中的C原子进行结构表征并与其核磁共振碳谱(13C NMR)建立了优良的定量构谱相关(QSSR)模型.其中29个单萜类化合物中的290个C原子建模的计算值经留一法(Leave-one-out,LOO)交互校验(Cross-validation,CV)预测值的复相关系数(R)分别为0.9900和0.9867,进一步使用倍半萜、二萜、三萜化合物分子中65个C原子的13C NMR化学位移值来检测该模型的稳定性,模型预测值和观测值间复相关系数(R)为0.9777,取得了令人满意的结果.  相似文献   

6.
This paper presents novel measurements and calculations of the olefinic (13)C chemical shift tensor principal values in several metal diene complexes. The experimental values and the calculations show shifts as large as 70 ppm with respect to the values in the parent olefinic compounds. These shifts are highly anisotropic, with the largest ones observed in the less shielded principal components and the smallest ones in the most shielded principal components of the tensor. The orientations of the principal components of the tensors remain, within 10 degrees , at their directions in ethylene and other olefinic compounds. The calculations, performed using the GIAO method and the LanDZ pseudopotential basis set, show good agreement with the experiments, and were used to establish definite evidence for the existence of a Cl-bridge structure in the bicyclo[2.2.1]hepta-2,5-diene (BCHD)dichlororuthenium(II) polymer.  相似文献   

7.
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.  相似文献   

8.
Knowledge of (13)C chemical shift anisotropy (CSA) in nucleotide bases is important for the interpretation of solution-state NMR relaxation data in terms of local dynamic properties of DNA and RNA. Accurate knowledge of the CSA becomes particularly important at high magnetic fields, prerequisite for adequate spectral resolution in larger oligonucleotides. Measurement of (13)C relaxation rates of protonated carbons in the bases of the so-called Dickerson dodecamer, d(CGCGAATTCGCG)(2), at 500 and 800 MHz (1)H frequency, together with the previously characterized structure and diffusion tensor yields CSA values for C5 in C, C6 in C and T, C8 in A and G, and C2 in A that are closest to values previously reported on the basis of solid-state FIREMAT NMR measurements, and mostly larger than values obtained by in vacuo DFT calculations. Owing to the noncollinearity of dipolar and CSA interactions, interpretation of the NMR relaxation rates is particularly sensitive to anisotropy of rotational diffusion, and use of isotropic diffusion models can result in considerable errors.  相似文献   

9.
The chemical shift tensors of the acetate anions in cadmium acetate dihydrate are calculated using a cluster approach, the embedded ion method (EIM), and a combination of the two in the EIM/cluster method. The results of these calculations are compared with those completed on the isolated acetate anion and show the need for the inclusion of intermolecular interactions. The RMS difference between experiment and theory improves from over 60 ppm when the calculation is completed on an isolated anion, to below 10 ppm when interactions to nearby atoms are included. The best cluster model includes three cadmium acetate dihydrate and gives an RMS result of 4.4 ppm. The EIM method, which uses point charges to account for the intermolecular effects, achieves an RMS of 7.7 ppm on individual anions alone. A combination of the two, the EIM/cluster method, shows that the only necessary atom to explicitly add is the nearest cadmium; this addition results in an RMS of 4.1 ppm. These results are also discussed in terms of the computational cost of the different calculations.  相似文献   

10.
The use of the standard density functional theory (DFT) leads to an overestimation of the paramagnetic contribution and underestimation of the shielding constants, especially for chlorinated carbon nuclei. For that reason, the predictions of chlorinated compounds often yield too high chemical shift values. In this study, the WC04 functional is shown to be capable of reducing the overestimation of the chemical shift of Cl‐bonded carbons in standard DFT functionals and to show a good performance in the prediction of 13C NMR chemical shifts of chlorinated organic compounds. The capability is attributed to the minimization of the contributions that intensively increase the chemical shift in the WC04. Extensive computations and analyses were performed to search for the optimal procedure for WC04. The B3LYP and mPW1PW91 standard functionals were also used to evaluate the performance. Through detailed comparisons between the basis set effects and the solvent effects on the results, the gas‐phase GIAO/WC04/6‐311+G(2d,p)//B3LYP/6‐31+G(d,p) was found to be specifically suitable for the prediction of 13C NMR chemical shifts of chlorides in both chlorinated and non‐chlorinated carbons. Further tests with eight molecules in the probe set sufficiently confirmed that WC04 was undoubtedly effective for accurately predicting 13C NMR chemical shifts of chlorinated organic compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The structure of (eta2-diphenylacetylene)Pt(PPh3) (2), as well as those of its dichloromethane and benzene solvates, is determined via X-ray crystallography. An investigation of the chemical shift (CS) tensors of the 13C-labeled carbons in Ph13C13CPh and (eta2-Ph13C13CPh)Pt(PPh3)2.(C6H6) is carried out via analysis of 13C NMR spectra from stationary solid samples. The principal components of the CS tensors as well as their orientations with respect to the 13C,13C internuclear vector are determined. DFT calculations of these CS tensors are in close agreement with the experimental values. For diphenylacetylene (tolane), the orientations and principal-component magnitudes of the alkynyl carbon CS tensors are comparable to those for other alkynyl carbons, although the CS tensor is not axially symmetric in this case. Coordination to platinum causes a change in the CS tensor orientation and a net increase in the isotropic chemical shift, resulting from a significant increase in two principal components (delta11 and delta33) while the third (delta22) decreases only slightly. The measured carbon CS tensors in the platinum complex bear a striking similarity to those of the alkenyl carbons in trans-Ph(H)C=C(H)Ph, and a short theoretical discussion of these observations is presented.  相似文献   

13.
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift anisotropy (CSA) powder line shapes with two dimensions of site-resolved isotropic chemical shifts. The principal tensor elements from 127 ROCSA line shapes are reported, constraining 102 unique backbone and side-chain 13C sites in a microcrystalline protein (the 56 residue beta1 immunoglobulin binding domain of protein G). The tensor elements, determined by fitting to numerical simulations, agree well with quantum chemical predictions. The experiments, therefore, validate calculations of CSAs in a protein of known structure. The data will be useful for the development of side-chain CSA quantum calculations and will aid in the design and interpretation of solution NMR experiments that utilize CSA-dipole cross-correlation to constrain torsion angles or to enhance resolution and sensitivity (such as in TROSY). Furthermore, the methodology described here will enable databases of CSA data to be generated with higher efficiency, for purposes of direct protein structure refinement.  相似文献   

14.
The trifluoromethyl anion (CF3) displays 13C NMR chemical shift (175.0 ppm) surprisingly larger than neutral (CHF3, 122.2 ppm) and cation (CF3+, 150.7 ppm) compounds. This unexpected deshielding effect for a carbanion is investigated by density functional theory calculations and decomposition analyses of the 13C shielding tensor into localized molecular orbital contributions. The present work determines the shielding mechanisms involved in the observed behaviour of the fluorinated anion species, shedding light on the experimental NMR data and demystify the classical correlation between electron density and NMR chemical shift. The presence of fluorine atoms induces the carbon lone pair to create a paramagnetic shielding on the carbon nucleus.  相似文献   

15.
The determination of backbone conformations in powdered peptides using 13C and 15N shift tensor information is explored. The 13C and 15N principal shift values in natural abundance 13C and 15N melanostatin (L-Pro-L-Leu-Gly amide) are measured using the FIREMAT technique. Furthermore, the orientation of the C-N bond in the 13C shift principal axis system for the backbone carbons is obtained from the presence of the 13C-14N dipolar coupling. The Ramachandran angles for the title compound are obtained from solid-state NMR data by comparing the experimentally determined shift tensor information to systematic theoretical shielding calculations on N-formyl-L-amino acid-amide models. The effects of geometry optimization and neglect of intermolecular interactions on the theoretical shielding values in the model compounds are investigated. The sets of NMR derived Ramachandran angles are assembled in a set of test structures that are compared to the available single-crystal X-ray structure. Shift tensor calculations on the test structures and the X-ray structure are used to further assess the importance of intermolecular interactions when the shift tensor is used as a structural probe in powdered peptides.  相似文献   

16.
A novel type of organic-inorganic hybrid zeolite with organic lattice (ZOL) is studied in detail by solid-state (13)C magic angle spinning nuclear magnetic resonance (MAS NMR). The (13)C MAS NMR measurements employing several pulse sequences quantitatively demonstrate that methylene groups are really incorporated in the framework, although they are partially cleaved into methyl groups. The organic species in ZOL materials are open for adsorbates, which is evidenced by the (13)C MAS NMR measurements for an n-hexane-adsorbing ZOL material. This finding strongly suggests that organic moieties are incorporated as a zeolite framework, indicating that ZOL is not a physical mixture of a carbon-containing amorphous aggregate and a conventional zeolite but a true organic-inorganic hybrid zeolite.  相似文献   

17.
《Chemical physics》1987,116(3):391-398
High-resolution 13C NMR spectra of polyoxymethylene (POM) in the solid state have been measured in order to obtain a relationship between the conformation and 13C NMR chemical shift tensor (δ11, δ22 and δ33) and its isotropic average. It was found that the 13C isotropic chemical shift of POM in the crystalline region appears upfield with respect to that in the noncrystalline region and that the width Δδ ( = δ11 - δ33) in the crystalline region is much larger than that in the noncrystalline region. These experimental findings can be reasonably explained by a theoretical calculation for an infinite POM chain based on a tight-binding molecular orbital calculation within the CNDO/2 framework.  相似文献   

18.
The 2D NMR-guided computer program COCON can be extremely valuable for the constitutional analysis of unknown compounds, if its results are evaluated by neural network-assisted 13C NMR chemical shift and substructure analyses. As instructive examples, data sets of four differently complex marine natural products were thoroughly investigated. As a significant step towards a true automated structure elucidation, it is shown that the primary COCON output can be safely diminished to less than 1% of its original size without losing the correct structural proposal.  相似文献   

19.
《Chemical physics letters》1986,123(3):159-163
The orientations of the principal axes of the 13C chemical shielding tensor of the double-bonded C5 carbon nucleus in single crystals of 1,1,2,2-tetraacetylethane are essentially identical with those of an aromatic carbon nucleus. That observation and the similarities between the tensors of the carbonyl and the enolic carbon nuclei result from strong intramolecular hydrogen bonding.  相似文献   

20.
A recently developed chemical shift anisotropy amplification solid-state nuclear magnetic resonance (NMR) experiment is applied to the measurement of the chemical shift tensors in three disaccharides: sucrose, maltose, and trehalose. The measured tensor principal values are compared with those calculated from first principles using density functional theory within the planewave-pseudopotential approach. In addition, a method of assigning poorly dispersed NMR spectra, based on comparing experimental and calculated shift anisotropies as well as isotropic shifts, is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号