首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper,three dimensional analyses of some general constraintparameters and fracture parameters near the crack tip of Mode I CT specimens in twodifferent thicknesses are carried out by employing ADINA program.The results revealthat the constraints along the thickness direction are obviously separated into twoparts:the keeping similar high constraint field(Z_1)and rapid reducing constraintsone(Z_2).The two fields are experimentally confiremed to correspond to the smoothregion and the shear lip on the fracture face respectively.So the three dimensionalstress structure of Mode I specimens can be derived through discussing the two fieldsrespectively.The distribution of the Crack Tip Opening Displacement(CTOD)alongthe thickness direction and the three dimensional distribution of the void growth ratio(V_9 )near the crack tip are also obtained.The two fracture parameters are in similartrends along the thickness direction,and both of them can reflect the effect ofthickness and that of the loading l  相似文献   

2.
The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is estab-lished to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM). The convergent stresses have good agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kan-torovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.  相似文献   

3.
The stress distributions of granular flow in a cylindrical hopper with fiat bottom are investigated by means of a combined approach of discrete element method (DEM) and averaging method. The filling and discharge of the hopper flow are first simulated at a particle level by means of a modified DEM. The results are then used to determine the velocity and stress profiles of the hopper flow by means of an averaging method. The analysis is focused on a central section plane of the hopper due to the relatively perfect axial symmetry. The velocity profiles are illustrated to be consistent with those obtained by the previous experiments, confirming the validity of the proposed approach. The distributions of four components of the planar stress tensor at different heights are quantified. It is shown that the vertical normal stress increases with increasing the height near the central axis, the horizontal normal stress varies more slowly at a higher level and is almost constant when the height is equal to or greater than about 12 particle diameter, and the magnitudes of two shear stresses are equal at the central zone of the hopper but not so at the points near the walls. The dependence of stress distributions on the wall mechanical properties such as sliding resistance and rolling resistance is also discussed.  相似文献   

4.
In this paper, the analytical solution of stress field for a strained reinforcement layer bonded to a lip-shaped crack under a remote mode III uniform load and a concentrated load is obtained explicitly in the series form by using the technical of conformal mapping and the method of analytic continuation. The effects of material combinations, bond of interface and geometric configurations on interfaciai stresses generated by eigenstrain, remote load and concentrated load are studied. The results show that the stress concentration and interfaciai stresses can be reduced by rational material combinations and geometric configurations designs for different load forms.  相似文献   

5.
In this paper,it is pointed that the general expression for the stress functionφ_0 of theplane problem in polar coordinates is incomplete.The problems of the curved bar with anarbitrary distributive load at the boundries can’t be solved by this stress function.For thisreason,we suggest two new stress functions and put them into the general expression.Then,the problems of the curved bar applied with an arbitrary distributive load at r=a,bboundaries can be solved.This is a new stress function including geometric boundaryconstants.  相似文献   

6.
Symmetric laminated plates used usually are anisotropic plates. Based on the fundamental equation for anisotropic rectangular plates in plane stress problem, a general analytical solution is established accurately by method of stress function. Therefore the general formula of stress and displacement in plane is given. The integral constants in general formula can be determined by boundary conditions. This general solution is composed of solutions made by trigonometric function and hyperbolic function, which can satisfy the problem of arbitrary boundary conditions along four edges, and the algebraic polynomial solutions which can satisfy the problem of boundary conditions at four corners. Consequently this general solution can be used to solve the plane stress problem with arbitrary boundary conditions. For example, a symmetric laminated square plate acted with uniform normal load, tangential load and nonuniform normal load on four edges is calculated and analyzed.  相似文献   

7.
The general solution of stresses is derived for a T-shaped junction of two thin plates with an adhesion crack.The plates are orthotropic.A shear force is applied on the crack surface.The analysis is based on the supposition that the stresses in each plate can be approximated by a plane stress condition.The results obtained are verified by numerical calculation of FEM.  相似文献   

8.
This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension.The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*.It is found that the system is more stable with higher dimensionless parameter l*. Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid.The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided.  相似文献   

9.
In this paper, the galactic spiral structure is studied bythe galactic shock wave of interstellar gas with self-gravita-tion. The perturbed gravitation of stars is not a necessarycondition for the existence of such Shock.It is proved firstof all that there exists solution of local Shock wave even ifthe perturbed gravitation is absent.The condition │ω_(no)│>a isrequired for such solution. The spiral structure can onlg beexplained by the shock solution when the difference of densitybetween the regions of arm and interarm is larger. The granddesign of shock wave with self-gravitation is obtained by theiterative method.The features of shock wave can be analyzedqualitatively in the velocity plane for a special perturbedgravitation Which is used to simulate the self-gravitation.ofinterstellar gas.As the mass distribution in proto-galacticdisk is irregular initially.the grand design of the galacticShock wave was developed by the processes of Winding,growth ofinstability and overlapping of waves.Hence.it giv  相似文献   

10.
Based on Reddy's layerwise theory, the governing equations for dynamic response of viscoelastic laminated plate are derived by using the quadratic interpolation function for displacement in the direction of plate thickness. Vibration frequencies and loss factors are calculated for free vibration of simply supported viscoelastic sandwich plate, showing good agreement with the results in the literature. Harmonious transverse stresses can be obtained. The results show that the transverse shear stresses are the main factor to the delamination of viscoelastic laminated plate in lower-frequency free vibration, and the transverse normal stress is the main one in higher-frequency free vibration. Relationship between the modulus of viscoelastic materials and transverse stress is analyzed. Ratio between the transverse stress's maximum value and the in-plane stress's maximum-value is obtained. The results show that the proposed method, and the adopted equations and programs are reliable.  相似文献   

11.
Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts when it is loaded under two opposite inside forces along a diameter. One part should fulfill a constraint condition about normal stress distribution along the circumference at an energy valley to do the minimum work. Other part is a stress residue constant. In order to verify these formulae and the computed results, the computed contour lines of equi-maximal shear stresses were plotted and quite compared with that of photo-elasticity test results. This constraint condition about normal stress distribution along circumference is confirmed by using Greens’ theorem. An additional compression exists along the circumference of the loaded ring, explaining the divorcement and displacement of singularity points at inner and outer boundaries.  相似文献   

12.
This paper deals with the problem of diffraction of elastic waves in the plane multiply-connected regions by the theory of complex functions.The complete function series whichapproach the solution of the problem and general expressions for boundary conditions aregiven.Then the problem is reduced to the solution to infinite series of algebraic equationsand the solution can be directly obtained by using electronic computer.In particular,for thecase of weak interaction,an asymptotic method is presented here,by which the problem of pwaves diffracted by a circular cavities is discussed in detail.Based on the solution of thediffracted wave field the general formulas for calculating stress concentrationfactor for a cavity of arbitrary shape in multiply-connected region are given.  相似文献   

13.
Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.  相似文献   

14.
The stresses and strains are calculated for CT specimen of power hardening material in 3-D deformation state using ADINA finite element program, and the stress distribution at the vicinity of crack tip for Mode Ⅰ fracture is analysed according to the results of calculation. It is found that the expression of stress can be written as the form of separation of variables of r and θ, then the function off can be expanded in Laurant series. It is still found that the three normal stresses have the same order of magnitude. The conclusions offer two suppositions to obtain the theoretical expression of stress at the vicinity of crack tip for Mode Ⅰ fracture with good ground, and the procedure of solution will be greatly simplified.  相似文献   

15.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

16.
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.  相似文献   

17.
The behavior of soil-structure interface plays a major role in the definition of soil-structure interaction. In this paper a bi-potential surface elasto-plastic model for soil-structure interface is proposed in order to describe the interface deformation behavior,including strain softening and normal dilatancy. The model is formulated in the framework of generalized potential theory,in which the soil-structure interface problem is regard as a two-dimensional mathematical problem in stress field,and plastic state equations are used to replace the traditional field surface. The relation curves of shear stress and tangential strain are fitted by a piecewise function composed by hyperbolic functions and hyperbolic secant functions,while the relation curves of normal strain and tangential strain are fitted by another piecewise function composed by quadratic functions and hyperbolic secant functions. The approach proposed has the advantage of deriving an elastoplastic constitutive matrix without postulating the plastic potential functions and yield surface. Moreover,the mathematical principle is clear,and the entire model parameters can be identified by experimental tests. Finally,the predictions of the model have been compared with experimental results obtained from simple shear tests under normal stresses,and results show the model is reasonable and practical.  相似文献   

18.
In this paper a new technique for measuring strain is presented.Usinggrating as the strain sensor,we can obtain strain and stress components by measuringthe deformation of the space position of diffraction spots.The cost of the hologra hicgrating by embossing is much reduced.By using the video and computer techniques thestrain and stress Values can be obtained automatically.  相似文献   

19.
The stress and deformation fields near the tip of a mode-I dynamic crack steadilypropagating in an elastic-perfectly plastic compressible material are considered under plane strain condi-tions. Within the framework of infinitesimal displacement gradient theory, the material is character-ized by the Von Mises yield criterion and the associated J_2 flow theory of plasticity. Through rigorousmathematical analysis, this paper eliminates the possibilities of elastic unloading and continuousasymptotic fields with singular deformation, and then constructs a fully continuous and boundedasymptotic stress and strain field. It is found that in this solution there exists a parameter (?)_0 whichcannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly thevariations of continuous stresses, velocities and strains around the crack tip are given numerically fordifferent values of (?)_0.  相似文献   

20.
Based on three dimensional (3D) Discrete Element Method (DEM), the paper presents simulation results of undrained tests on loose assemblies of polydisperse spheres under axisymmetric compression and plane strain conditions using a periodic cell. In the present work, undrained tests were modelled by deforming the samples under constant volume conditions. The undrained (effective) stress paths are shown to be qualitatively similar to experimental results in literature. A microscopic parameter in terms of redundancy factor (RF) is used to identify the onset of liquefaction (or temporary liquefaction), with the condition of RF equal to unity defining the transition from ’solid-like’ to ’liquid-like’ behaviour. It is found that the undrained behaviour is governed by the evolution of redundancy factor under both undrained axisymmetric compression and plane strain conditions, and a reversal of deviatoric stress in stress path for medium loose systems occurs due to the fact that the system becomes a structural mechanism (RF<1) transiently at the microscopic level during the evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号